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Summary

In statistics, we are often interested in comparing the means of multiple popula-

tions. Commonly used mean comparison methods invoke the assumption of homo-

geneous variance-covariance matrices. When this assumption is relaxed, this prob-

lem becomes increasingly complex and exact solutions are often computationally

intractable.

This project deals with approximate solutions to the multivariate Behrens-Fisher

(MBF) problem. The MBF problem is the problem of testing equality of means of

two normally distributed populations with unequal variance-covariance matrices.

As previously explained, the difficulty of this problem is attributed to this variance

constraint. Assuming equality of variances, it is easy to construct a natural Wald-

type test statistic which exactly follows the well-known Hotelling’s T 2 distribution

under the null hypothesis. On the other hand, the exact distribution of the test

statistic under the condition of unequal variances is infeasible to compute. Numerous

researchers, e.g. James (1954) and Johansen (1980), have attempted to formulate

approximate solutions to this problem.

The main paper used for this project is Yanagihara and Yuan’s (2005) Three

Approximate Solutions to the Multivariate Behrens-Fisher Problem. The authors

developed 3 (three) methods of approximate solutions to the MBF problem. Their

main method involved approximating the null distribution of the natural test statis-

tic with an F distribution, while the other two incorporated the Bartlett (1937)

and modified Bartlett correction (Fujikoshi, 2000). In addition, they also compared

the Type I errors (size) of their methods with 5 (five) other methods by means of

Monte-Carlo simulations.

The first section of this thesis starts with a detailed explanation about the uni-

variate and multivariate Behrens-Fisher problems, followed by a brief literature re-

view about numerous approximate solutions developed by researchers. The non-

singular invariance, affine invariance and independence of different labelling schemes
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properties desirable for an approximate solution are also examined in this section.

Moreover, we also discuss some theoretical knowledge of the Wishart and Hotelling’s

T 2 distributions, which will be alluded to in the subsequent sections.

The second section details Yanagihara and Yuan’s (2005) paper. The authors’

approaches and approximation methods are comprehensively presented. A lot of

results in the paper were stated without any proofs, and this section includes proofs

and derivations of most of the results. In addition, we also discuss the performance

of each method assessed through simulations performed by the authors as well as

additional insights obtained from our more exhaustive simulation studies.

The third section mainly talks about the general linear hypothesis testing (GLHT)

problem in heteroscedastic one-way MANOVA, which is a natural generalisation of

the MBF problem. We first discuss the setting of the problem, and summarise

Zhang’s (2012) approach of modifying Krishnamoorthy and Yu’s (2004) method to

obtain an approximate solution to the GLHT problem. We then introduce a modifi-

cation of Yanagihara and Yuan’s (2005) F approximation method based on Zhang’s

(2012) idea. Both modified methods will be shown to be non-singular, affine in-

variant and independent of different labelling schemes, and reduce to the original

methods in the context of the MBF problem. Moreover, the simulation results com-

paring both methods are also presented and explored. We also discuss an alternative

method to deal with the case of high-dimensional multivariate normal distributions,

in which the existing methods perform very badly.

The last section attempts to evaluate the performance of the methods derived

in the previous section by using real-life data. The five-dimensional Egyptian Skull

data, which contains measurement of male Egyptian skulls from 5 (five) different

time periods, is used. These two methods are compared with the powerful yet

inefficient parametric bootstrap (PB) method introduced by Krishnamoorthy and

Lu (2010) in terms of the p-value.
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1 Introduction

1.1 The Univariate Behrens-Fisher Problem

Let N (µ, σ2) denote the univariate normal distribution with mean µ and variance

σ2. Suppose that X1, X2, · · · , Xn1 is an independent and identically distributed

(i.i.d.) sample drawn from N (µ1, σ
2
1), and Y1, Y2, · · · , Yn2 is an i.i.d. sample drawn

from N (µ2, σ
2
2). We are interested in testing the null hypothesis H0 : µ1 = µ2 versus

the two-sided alternative hypothesis H1 : µ1 6= µ2.

Consider the case where σ2
1 = σ2

2 = σ2, i.e. the two populations have the same

variance. In this setting, we are actually testing whether the two populations have

the same distribution. For the sample drawn from the first normal population, let

X = 1
n1

∑n1

i=1Xi denote the sample mean and s2
1 = (n1 − 1)

∑n1

i=1(Xi −X)2 denote

the sample variance. Similarly, Y and s2
2 respectively denote the sample mean and

sample variance of the sample drawn from the second normal population.

It is well-known that under H0, the test statistic

t =
X − Y√

(n1−1)s21+(n2−1)s22
n1+n2−2

√
1
n1

+ 1
n2

(1)

exactly follows the tn1+n2−2 distribution. In order to perform a hypothesis testing

with a specified significance level α, it suffices to check whether |t| > tn1+n2−2(α/2),

where tk(β) denotes the critical value for a t distribution with k degrees of freedom

when the right-tail probability is β. We reject H0 if the above inequality holds and

accept H0 otherwise.

Now, we consider the other case where σ2
1 6= σ2

2. This problem of testing the

equality of means of two normally distributed populations when the variances are

not equal is referred to as the univariate Behrens-Fisher problem. As mentioned

in the Summary, the condition of unequal variances imposed is what makes the

Behrens-Fisher problem particularly difficult. Indeed, although exact solutions to
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this problem have been investigated, they are difficult to compute (Yanagihara and

Yuan, 2005) and thus not of our interest. Researchers have been more interested in

studying approximate solutions to the Behrens-Fisher problem.

A well-known approximate solution to the univariate Behrens-Fisher problem

was developed by Welch (1938), which asserts that the test statistic

t =
X − Y√
s21
n1

+
s22
n2

(2)

approximately follows the tk distribution, where

k =

(
s21
n1

+
s22
n2

)2

s41
n2
1(n1−1)

+
s42

n2
2(n2−1)

. (3)

1.2 The Multivariate Behrens-Fisher (MBF) Problem

The multivariate Behrens-Fisher (MBF) problem is a natural generalisation of the

univariate counterpart. Instead of considering two univariate normal populations,

we now consider two multivariate normal populations. Let Np(µ,Σ) denote the p-

variate normal distribution with mean vector µ and variance-covariance matrix Σ.

Suppose that y11, y21, · · · , yn11 is an i.i.d. sample drawn from Np(µ1,Σ1), and

y12, y22, · · · , yn22 is an i.i.d. sample drawn from Np(µ2,Σ2). For j ∈ {1, 2}, let

yj = 1
nj

∑nj

i=1 yij denote the sample mean and Sj = 1
nj−1

∑nj

i=1(yij − yj)(yij − yj)
′

denote the sample variance. Same as the univariate case, we are interested in testing

the null hypothesis H0 : µ1 = µ2 versus the two-sided alternative hypothesis H1 :

µ1 6= µ2.

When Σ1 = Σ2, it is known that under H0,

n1n2

n1 + n2

(y1 − y2)′
((n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2

)−1

(y1 − y2) (4)

exactly follows the T 2(p, n1 +n2−2) distribution, i.e. the Hotelling’s T 2 distribution
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with p and n1 +n2−2 degrees of freedom. Hotelling’s T 2 distribution is actually just

a scaled F distribution. We will explain this distribution more thoroughly in the

subsequent section. A hypothesis testing can be performed using a similar technique

as for the univariate case.

When Σ1 6= Σ2, this problem is known as the MBF problem. In this case, a

natural Wald-type statistic for testing H0 is

T = (y1 − y2)′
(S1

n1

+
S2

n2

)−1

(y1 − y2). (5)

It is worth mentioning that when n1 = n2, the statistic in (4) reduces to the statistic

in (5). Yanagihara and Yuan (2005) noted that when n1 and n2 approach infinity,

T converges to χ2
p. Predictably, an approximate solution based on this convergence

performs very badly when one of the sample sizes is small.

1.3 Approximate Solutions to the MBF Problem and Their

Desirable Properties

Nel et al. (1990) managed to obtain the exact null distribution of T ; however, it

is “computatioinally intractable” (Yanagihara and Yuan, 2005). Instead of study-

ing exact solutions, it is therefore more plausible to develop approximate solutions

with superior size and power. Numerous researches (e.g. James (1954), Johansen

(1980), Yao (1965), Nel and van der Merwe (1986)) have been devoted to finding

approximate solutions to the MBF problem.

According to Zhang (2012), there are 3 (three) properties which are desirable for

an approximate solution to the MBF problem, namely:

• Affine invariance

Ideally, a solution to the MBF problem must give the same null distribution

and value of the test statistic if the samples y11, y21, · · · , yn11 and y22, · · · ,

yn22 are re-centred or rescaled (Zhang, 2012). In particular, transforming each
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of the yij ’s to ỹij = Byij + b (i ∈ {1, 2, · · · , nj}, j ∈ {1, 2}), where B is any

invertible constant matrix with p columns and b any constant vector of length

p, should not affect the hypothesis testing.

• Nonsingular invariance

Note that the null hypothesis H0 : µ1 = µ2 is equivalent to HA : Aµ1 =

Aµ2 for any invertible matrix A with p columns. A desirable method should

therefore be nonsingular invariant, i.e. independent of the choice of A.

• Independence of different labelling schemes

Recall that we have an i.i.d. sample y11, y21, · · · , yn11drawn fromNp(µ1,Σ1),

and an i.i.d. sample y12, y22, · · · , yn22 drawn from Np(µ2,Σ2). We would

clearly expect testing µ1 = µ2 to give the same result as testing µ2 = µ1.

Yanagihara and Yuan (2005) stated that the statistic obtained by Nel and van

der Merwe (1986) was not affine invariant. Krishnamoorthy and Yu (2004) then

modified the statistic to become invariant.

1.4 The Wishart and Hotelling’s T 2 Distribution

Throughout this thesis, we will use the Wishart and Hotelling’s T 2 distributions in

several instances so as to derive some approximate solutions to the MBF problem.

This section is devoted to explaining the definition and useful properties of both

distributions. The results below are cited from Jung’s (2013) and Hanson’s (2014)

lecture notes.

Definition 1. Let X1,X2, · · · ,Xn be an i.i.d. sample drawn from Np(0,Σ), and

suppose X = [X1,X2, · · · ,Xn]. Then XX ′ is said to follow Wp(n,Σ), i.e. the

Wishart distribution with n degrees of freedom and covariance matrix Σ.

Proposition 1.1.

1. LetM ∼ Wp(n,Σ) andB be a p×m real matrix. ThenB′MB ∼ Wm(n,B′ΣB).
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2. Let M ∼ Wp(n,Σ). Then Σ−1/2MΣ−1/2 ∼ Wp(n, Ip).

3. Let Mi ∼ Wp(ni,Σ) (i = 1, 2, · · · k) be independent. Then
∑k

i=1Mi ∼

Wp(n,Σ), where n = n1 + n2 + · · ·+ nk.

4. Let M ∼ Wp(n,Σ). Then E[M ] = nΣ.

5. Let M ∼ Wp(n,Σ). Then V[M ] = n(tr(Σ2)+(tr(Σ))2). Here, V[M ] denotes

the sum of the variances of all the entries of M .

6. Let X1,X2, · · · ,Xn be an i.i.d. sample from Np(µ,Σ) and S be the sample

variance. Then (n− 1)S ∼ Wp(n− 1,Σ).

Definition 2. Let d ∼ Np(0, Ip) and M ∼ Wp(m, Ip) be independent. Then

md′M−1d is said to follow T 2(p,m), i.e. the Hotelling’s T 2 distribution with p

and m degrees of freedom.

Proposition 1.2. Let x ∼ Np(µ,Σ) and M ∼ Wp(m,Σ) be independent. Then

m(x− µ)′M−1(x− µ) ∼ T 2(p,m).

Proof. Note that Σ−1/2(x − µ) ∼ Np(0, Ip) and Σ−1/2MΣ−1/2 ∼ Wp(m, Ip) by

Proposition 1.1. Using Definition 2 with the substitutions d := Σ−1/2(x − µ) and

M := Σ−1/2MΣ−1/2, the result immediately follows.

Now, let X1,X2, · · · ,Xn be an i.i.d. sample from Np(µ,Σ). Denote the sam-

ple mean and sample variance by X and S, respectively. We have the following

proposition:

Proposition 1.3. Following the above notation, we have n(X −µ)′S−1(X −µ) ∼

T 2(p, n− 1).

Proof. Note that
√
n(X − µ) ∼ Np(0,Σ) and (n− 1)S ∼ Wp(n− 1,Σ). By using

Proposition 1.2 and the well-known fact that X and S are independent, the result

immediately follows.
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We end this section with the following important proposition that connects

Hotelling’s T 2 distribution with the F distribution. A proof of this proposition

can be found in Hanson’s (2014) lecture notes.

Proposition 1.4. Let X ∼ T 2(p,m). Then m−p+1
mp

X ∼ Fp,m−p+1. In other words,

Hotelling’s T 2 distribution is just a scaled F distribution.
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2 Yanagihara and Yuan’s (2005) Paper

2.1 The Outline of Yanagihara and Yuan’s (2005) Paper

In 2005, Yanagihara and Yuan published a research paper titled Three Approximate

Solutions to the Multivariate Behrens-Fisher Problem. As the title suggests, the

authors developed 3 (three) approximate solutions to the MBF problem. Their

main solution involved approximating the natural Wald-type test statistic with an

F distribution with appropriate degrees of freedom, while their other two solutions

utilised the well-known Bartlett correction (Bartlett, 1937) and modified Bartlett

correction (Fujikoshi, 2000). The next subsection provides a comprehensive study

of Yanagihara and Yuan’s (2005) main method.

In addition, the authors compared the Type I errors, i.e. the probability of

rejecting a true null hypothesis, of their methods with 5 (five) other methods by

means of Monte-Carlo simulations. They also measured a quantity called the average

absolute discrepancy (AAD), which is the average of the differences between the

nominal and empirical (Type I error) sizes. An approximate solution with a small

AAD is more desirable. The authors concluded that their main method is better than

the other methods in terms of the AAD. The subsection after the next subsection

details these simulation studies.

The 8 (eight) methods considered in their research paper can be summarised as

follows:

• The simple chi-square approximation method, which approximates T with a

chi-square distribution with p degrees of freedom.

• Yanagihara and Yuan’s (2005) main method, which approximates TF = n−2−θ̂1
(n−2)p

T

with an F distribution with p and v̂ degrees of freedom, where

θ̂1 =
pψ̂1 + (p− 2)ψ̂2

p(p+ 2)
, θ̂2 =

ψ̂1 + 2ψ̂2

p(p+ 2)
and v̂ =

(n− 2− θ̂1)2

(n− 2)θ̂2 − θ̂1

.
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• Yanagihara and Yuan’s (2005) second method, which approximates

TB =
(

1− ψ̂1 + ψ̂2

p(n− 2)

)
T

with a chi-square distribution with p degrees of freedom.

• Yanagihara and Yuan’s (2005) third method, which approximates

TMB =
(p+ 2)(2p(n− 2)− ψ̂1)

2(ψ̂1 + 2ψ̂2)
log
(

1 +
T (ψ̂1 + 2ψ̂2)

(n− 2)p(p+ 2)

)

with a chi-square distribution with p degrees of freedom.

• James’ (1954) second-order approximation, which approximates the critical

point of the null distribution of T with

c(p)
α

(
1 +

(p+ 2)ψ̂1 + (ψ̂1 + 2ψ̂2)c
(p)
α

2p(p+ 2)(n− 2)

)
,

where c
(p)
α is the upper α percentage point of a chi-square distribution with p

degrees of freedom.

• Yao’s (1965) method, which approximates TFY = T
v̂Y p

with an F distribution

with p and v̂Y − p+ 1 degrees of freedom, where

v̂Y =
n2(n1 − 1)(n2 − 1)(y′dS

−1
yd)2

n2
2(n2 − 1)(y′dS

−1
S1S

−1
yd)2 + n2

1(n1 − 1)(y′dS
−1
S2S

−1
yd)2

with yd = y1 − y2 and S = n2

n
S1 + n1

n
S2.

• Johansen’s (1980) method, which approximates TFJ = T

φ̂J
with an F distribu-

tion with p and v̂J degrees of freedom, where

φ̂J = p+
(p− 1)(ψ̂1 + ψ̂2)

(p+ 2)(n− 2)
and v̂J =

2p(p+ 2)(n− 2)

3(ψ̂1 + ψ̂2)
.
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• Modified Nel and Van der Merwe’s Method (Krishnamoorthy and Yu, 2004),

which approximates TFM = (v̂M−p+1)T
v̂Mp

with an F distribution with p and

v̂M − p+ 1 degrees of freedom, where

v̂M =
p(p+ 1)(n− 2)

ψ̂1 + ψ̂2

.

Here, T denotes the test statistic mentioned in (5), p denotes the dimension

of the multivariate normal distributions, n1 and n2 denote the sample sizes and

n = n1 + n2, y1 and y2 denote the sample means, S1 and S2 denote the sample

variances,

ψ̂1 =
n2

2(n− 2)

n2(n1 − 1)
(tr(S1S

−1
))2 +

n2
1(n− 2)

n2(n2 − 1)
(tr(S2S

−1
))2 and (6)

ψ̂2 =
n2

2(n− 2)

n2(n1 − 1)
tr(S1S

−1
S1S

−1
) +

n2
1(n− 2)

n2(n2 − 1)
tr(S2S

−1
S2S

−1
). (7)

2.2 Yanagihara and Yuan’s (2005) Main Method

Let us recall the setting of the MBF problem as mentioned in Section 1.2. Suppose

that y11, y21, · · · , yn11 is an i.i.d. sample drawn fromNp(µ1,Σ1), and y12, y22, · · · ,

yn22 is an i.i.d. sample drawn from Np(µ2,Σ2). For j ∈ {1, 2}, let yj = 1
nj

∑nj

i=1 yij

denote the sample mean and Sj = 1
nj−1

∑nj

i=1(yij−yj)(yij−yj)
′ denote the sample

variance. We are interested in testing the null hypothesis H0 : µ1 = µ2 versus the

two-sided alternative hypothesis H1 : µ1 6= µ2 assuming that Σ1 6= Σ2. A natural

Wald-type statistic for testing H0 is, as mentioned in (5),

T = (y1 − y2)′
(S1

n1

+
S2

n2

)−1

(y1 − y2).

To begin with, let Σ = n2

n
Σ1 + n1

n
Σ2, where n = n1 + n2. Since Σ1 and Σ2 are
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symmetric, it follows that Σ is also symmetric. Moreover, let

z =

√
n1n2

n
Σ
− 1

2 (y1 − y2) and W = Σ
− 1

2

(n2

n
S1 +

n1

n
S2

)
Σ
− 1

2 . (8)

This implies

z′W−1z =

√
n1n2

n
(y1 − y2)′Σ

− 1
2 Σ

1
2

(n2

n
S1 +

n1

n
S2

)−1

Σ
1
2

√
n1n2

n
Σ
− 1

2 (y1 − y2)

=
n1n2

n
(y1 − y2)′

(n2

n
S1 +

n1

n
S2

)−1

(y1 − y2)

= (y1 − y2)′
(S1

n1

+
S2

n2

)−1

(y1 − y2)

= T.

Next, we write T = z′W−1z = z′z
U

, where U = z′z
z′W−1z

. Notice that under H0,

z′z = (y1 − y2)′
(Σ1

n1

+
Σ2

n2

)−1

(y1 − y2) ∼ χ2
p (9)

since y1 − y2 ∼ Np(0,
Σ1

n1
+ Σ2

n2
). Moreover, it can be shown that z′z and U are

mutually independent (Fang et al., 1990). Our aim is to approximate the null

distribution of T with a constant multiple of an F distribution.

Since z′z ∼ χ2
p, in order to achieve our ultimate goal it is natural to assume

U ≈ χ2
v

φ
, (10)

which means

T =
z′z

U
≈

χ2
p

χ2
v/φ

=
φp

v

χ2
p/p

χ2
v/v

or

v

φp
T

a∼ Fp,v, (11)

where
a∼ means ”approximately follows”.

Now, using the well-known fact about the mean and variance of a chi-square
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distribution, we obtain from (10) that

E[U ] ≈ v

φ
and E[U2] ≈ v(v + 2)

φ2
. (12)

In order to approximate the constant v and φ, we calculate the first and second

moments of U asymptotically by means of the identity U = z′z
z′W−1z

and match them

with (12). First, observe that

W−1 = Σ
1
2

(n2

n
S1 +

n1

n
S2

)−1

Σ
1
2

=
(n2

n
Σ1 +

n1

n
Σ2

) 1
2
(n2

n
S1 +

n1

n
S2

)−1(n2

n
Σ1 +

n1

n
Σ2

) 1
2

= Ip −
1√
n− 2

V +
1

n− 2
V

2
+ Op((n− 2)−

3
2 ),

where

V =
√
n− 2 Σ

− 1
2

(n2

n
(S1 −Σ1) +

n1

n
(S2 −Σ2)

)
Σ
− 1

2 . (13)

Since U = z′z
z′W−1z

, it follows that

U = 1 +
1√
n− 2

(z′V z
z′z

)
+

1

n− 2

((z′V z)2

(z′z)2
− z

′V
2
z

z′z

)
+ Op((n− 2)−

3
2 ) (14)

and

U2 = 1 +
2√
n− 2

(z′V z
z′z

)
+

1

n− 2

(3(z′V z)2

(z′z)2
− 2z′V

2
z

z′z

)
+ Op((n− 2)−

3
2 ). (15)

V and z are independent, and so are z′V z
z′z

and z′z as well as z′V
2
z

z′z
and z′z. A

proof of this result can be found in Fang et al.’s (1990) Symmetric Multivariate and

Related Distributions. Taking expectations on both sides of (14) and (15) and using

the established independence conditions, we easily obtain

E[U ] ≈ 1 +
1√
n− 2

E[z′V z]

E[z′z]
+

1

n− 2

(E[(z′V z)2]

E[(z′z)2]
− E[z′V

2
z]

E[z′z]

)
and (16)

11



E[U2] ≈ 1 +
2√
n− 2

E[z′V z]

E[z′z]
+

1

n− 2

(
3

E[(z′V z)2]

E[(z′z)2]
− 2

E[z′V
2
z]

E[z′z]

)
. (17)

Recall that we already have z′z ∼ χ2
p, so that E[z′z] = p and E[(z′z)2] = p(p+ 2).

Hence, it remains for us to calculate the following 3 (three) quantities: E[z′V z],

E[(z′V z)2] and E[z′V
2
z].

The first quantity is actually very simple to compute. We just need to apply

the law of total expectation and use the facts that V and z are independent and

E[V ] = 0 (since S1 and S2 are both unbiased estimators for Σ1 and Σ2). These

give us E[z′V z] = 0. In order to compute the other two quantities, we need the

following proposition:

Proposition 2.1. Let y ∼ Np(µ,Σ). For any symmetric p× p constant matrix A,

we have

1. E[y′Ay] = tr(AΣ) + µ′Aµ and

2. Var[y′Ay] = 2tr(AΣAΣ) + 4µ′AΣAµ.

Proof. For the first part, we note that by definition, Σ = E[yy′] − µµ′. We also

note that y′Ay is a scalar, so that its expectation is the same as the expectation of

its trace. We thus have

E[y′Ay] = E[tr(y′Ay)] since y′Ay is a scalar

= E[tr(Ayy′)] by the cyclic property of the trace function

= tr(E[Ayy′]) by the commutativity of the trace and expectation functions

= tr(AE[yy′]) since A is a constant matrix

= tr(A(Σ + µµ′)) since Σ = E[yy′]− µµ′ by the definition of Σ

= tr(AΣ) + tr(µ′Aµ) by the properties of the trace function

= tr(AΣ) + µ′Aµ since µ′Aµ is a scalar.

For the second part, see Rencher and Schaalje’s (2008) Linear Models in Statistics.
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We also have the following corollary:

Corollary 2.1.1. Let u ∼ Np(0, Ip) and A be a symmetric p× p constant matrix.

We have

1. E[u′Au] = tr(A) and

2. E[(u′Au)2] = 2tr(A2) + (tr(A))2.

Proof. Simply use Proposition 2.1 with the substitutions µ = 0 and Σ = Ip.

We also need the following proposition taken from Gupta and Nagar’s (1999)

Matrix Variate Distributions :

Proposition 2.2. If T ∼ Wp(n − 1,Σ) and A is a p × p constant matrix, the

following holds:

1. E[TAT ] = (n− 1)ΣA′Σ + (n− 1)tr(ΣA)Σ + (n− 1)2ΣAΣ and

2. E[tr(AT )T ] = (n− 1)ΣAΣ + (n− 1)ΣA′Σ + (n− 1)2tr(AΣ)Σ.

The following corollary follows from Proposition 2.2:

Corollary 2.2.1. Let (n− 1)S ∼ Wp(n− 1,Σ), V =
√
n− 1(S −Σ) and A be a

p× p symmetric constant matrix. We have

1. E[(tr(AV ))2] = 2tr(AΣAΣ) and

2. E[tr(AV AV )] = tr(AΣAΣ) + (tr(AΣ))2.

Proof. To show the first part, see that

E[(tr(AV ))2] = (n− 1)E[(tr(AS −AΣ))2]

= (n− 1)E[(tr(AS)− tr(AΣ))2]

= (n− 1)(E[(tr(AS))2]− 2E[tr(AS)]E[tr(AΣ)] + E[(tr(AΣ))2]).

13



Notice also that since Σ is a constant matrix,

E[tr(AS)] = tr(E[AS]) = tr(AE[S]) = tr(AΣ) = E[tr(AΣ)].

Therefore, E[(tr(AV ))2] = (n− 1)(E[(tr(AS))2]− (tr(AΣ))2).

Now, see that

E[(tr(AS))2] = E[tr(tr(AS)SA)] = tr(E[tr(AS)SA]) = tr(E[tr(AS)S]A).

By Proposition 2.2(2),

E[tr(AS)S] =
ΣAΣ

n− 1
+

ΣA′Σ

n− 1
+ tr(AΣ)Σ =

2ΣAΣ

n− 1
+ tr(AΣ)Σ

since A is symmetric and (n− 1)S ∼ Wp(n− 1,Σ). Hence,

E[(tr(AS))2] = tr
(2ΣAΣA

n− 1
+ tr(AΣ)ΣA

)
=

2

n− 1
tr(ΣAΣA) + (tr(AΣ))2.

This, together with the last result in the previous paragraph, clearly prove the first

part of Corollary 2.2.1.

To show the second part, see that

E[tr(AV AV )] = (n− 1)E[tr(A(S −Σ)A(S −Σ))]

= (n− 1)E[tr(ASAS)− tr(ASAΣ)− tr(AΣAS) + tr(AΣAΣ)]

= (n− 1)(E[tr(ASAS)]− tr(AΣAΣ))

since

E[tr(ASAΣ)] = E[tr(AΣAS)] = tr(E[AΣAS]) = tr(AΣAE[S]) = tr(AΣAΣ).

14



By Proposition 2.2(1),

E[tr(ASAS)] = tr(E[ASAS]) = tr(AE[SAS])

= tr
(AΣAΣ

n− 1
+
Atr(ΣA)Σ

n− 1
+AΣAΣ

)
=

n

n− 1
tr(AΣAΣ) +

(tr(AΣ))2

n− 1

since A is symmetric and (n− 1)S ∼ Wp(n− 1,Σ). Therefore,

E[tr(AV AV )] = (n−1)
( 1

n− 1
tr(AΣAΣ)+

(tr(AΣ))2

n− 1

)
= tr(AΣAΣ)+(tr(AΣ))2,

completing the proof.

We now present Proposition 2.3, which pertains to the value of the quantities

E[(z′V z)2] and E[z′V
2
z].

Proposition 2.3. Let

ψ1 =
n2

2(n− 2)

n2(n1 − 1)
[tr(Σ1Σ

−1
)]2 +

n2
1(n− 2)

n2(n2 − 1)
[tr(Σ2Σ

−1
)]2 and

ψ2 =
n2

2(n− 2)

n2(n1 − 1)
tr(Σ1Σ

−1
Σ1Σ

−1
) +

n2
1(n− 2)

n2(n2 − 1)
tr(Σ2Σ

−1
Σ2Σ

−1
).

Then, under H0, E[z′V
2
z] = ψ1 + ψ2 and E[(z′V z)2] = 2ψ1 + 4ψ2.

Proof. Since y1 ∼ Np(µ1,
Σ1

n1
) and y2 ∼ Np(µ2,

Σ2

n2
) and they are independent,

y1−y2 ∼ Np(µ1−µ2,
Σ1

n1
+ Σ2

n2
). This means under H0, z =

√
n1n2

n
Σ
− 1

2 (y1−y2) ∼

Np(0, Ip). Since z and V are independent, using Corollary 2.1.1(1) and the law of

total expectation, we obtain E[z′V
2
z] = E[tr(V

2
)]. Moreover, applying Corollary

2.2.1(2) with the substitutions S := S1, n := n1, Σ := Σ1 and A := Σ
−1

, we have

E[tr(Σ
−1

(S1 −Σ1)Σ
−1

(S1 −Σ1))] =
tr(Σ

−1
Σ1Σ

−1
Σ1) + (tr(Σ

−1
Σ1))2

n1 − 1
.
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Similarly,

E[tr(Σ
−1

(S2 −Σ2)Σ
−1

(S2 −Σ2))] =
tr(Σ

−1
Σ2Σ

−1
Σ2) + (tr(Σ

−1
Σ2))2

n2 − 1
.

Now, by the definition of V in (13), we have E[tr(V
2
)] = (n−2)(P +Q+R+S),

where

P = E
[
tr
(
Σ
− 1

2
n2

n
(S1 −Σ1)Σ

− 1
2
n2

n
(S1 −Σ1)Σ

− 1
2
)]
,

Q = E
[
tr
(
Σ
− 1

2
n1

n
(S2 −Σ2)Σ

− 1
2
n1

n
(S2 −Σ2)Σ

− 1
2
)]
,

R = E
[
tr
(
Σ
− 1

2
n2

n
(S1 −Σ1)Σ

− 1
2
n1

n
(S2 −Σ2)Σ

− 1
2
)]

and

S = E
[
tr
(
Σ
− 1

2
n1

n
(S2 −Σ2)Σ

− 1
2
n2

n
(S1 −Σ1)Σ

− 1
2
)]
.

Using the results from the previous paragraph and the cyclic property of the trace

function, we have

P =
n2

2

n2(n1 − 1)
[tr(Σ

−1
Σ1Σ

−1
Σ1) + (tr(Σ

−1
Σ1))2].

Similarly,

Q =
n2

1

n2(n2 − 1)
[tr(Σ

−1
Σ2Σ

−1
Σ2) + (tr(Σ

−1
Σ2))2].

Notice that R = S = 0 since S1−Σ1 and S2−Σ2 are independent and E[Si] = Σi

for i ∈ {1, 2}. Therefore, E[tr(V
2
)] = (n − 2)(P + Q) = ψ1 + ψ2 using the fact

that tr(Z) = tr(Z ′) for every square matrix Z. This proves the first part of the

proposition.

In order to prove the second part, notice that Corollary 2.1.1(2) and the law of

total expectation give us

E[(z′V z)2] = 2E[tr(V
2
)] + E[(tr(V ))2] = 2(ψ1 + ψ2) + E[(tr(V ))2].

Therefore, it suffices to show that E[(tr(V ))2] = 2ψ2. By Corollary 2.2.1(1) and the
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same substitutions as above, we have

E[(tr(Σ
−1√

n1 − 1(S1 −Σ1)))2] = 2tr(Σ
−1

Σ1Σ
−1

Σ1) and

E[(tr(Σ
−1√

n2 − 1(S2 −Σ2)))2] = 2tr(Σ
−1

Σ2Σ
−1

Σ2).

By the definition of V in (13), we have E[(tr(V ))2] = (n−2)(T +U+2V ), where

T = E
[(

tr
(
Σ
− 1

2
n2

n
(S1 −Σ1)Σ

− 1
2
))2]

,

U = E
[(

tr
(
Σ
− 1

2
n1

n
(S2 −Σ2)Σ

− 1
2
))2]

and

V = E
[
tr
(
Σ
− 1

2
n2

n
(S1 −Σ1)Σ

− 1
2
)
tr
(
Σ
− 1

2
n1

n
(S2 −Σ2)Σ

− 1
2
)]
.

See that V = 0 as S1 and S2 are independent and E(Si) = Σi for i ∈ {1, 2}.

Moreover, using the results from the previous paragraph and the cyclic property of

the trace function, we obtain

T =
2n2

2

n2(n1 − 1)
tr(Σ1Σ

−1
Σ1Σ

−1
) and U =

2n2
1

n2(n2 − 1)
tr(Σ2Σ

−1
Σ2Σ

−1
).

Combined with the fact that tr(Z) = tr(Z ′) for every square matrix Z, we have

proven the second part of the proposition. We are done.

Using Proposition 2.3, (16) and (17) become

E[U ] ≈ 1− θ1

n− 2
and (18)

E[U2] ≈ 1− 2

n− 2
(θ1 − θ2), (19)

where

θ1 =
pψ1 + (p− 2)ψ2

p(p+ 2)
and θ2 =

ψ1 + 2ψ2

p(p+ 2)
. (20)
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By equating (18) and (19) with (12), we obtain

v =
(n− 2− θ1)2

(n− 2)θ2 − θ21
2

and φ =
v(n− 2)

n− 2− θ1

. (21)

In order to make (11) exact when Σ1 = Σ2 and n1 = n2, we make a slight adjustment

to v. It now becomes

v =
(n− 2− θ1)2

(n− 2)θ2 − θ1

. (22)

An F statistic is obtained by using consistent estimates of v and φ. We let

ψ̂1 =
n2

2(n− 2)

n2(n1 − 1)
(tr(S1S

−1
))2 +

n2
1(n− 2)

n2(n2 − 1)
(tr(S2S

−1
))2 and (23)

ψ̂2 =
n2

2(n− 2)

n2(n1 − 1)
tr(S1S

−1
S1S

−1
) +

n2
1(n− 2)

n2(n2 − 1)
tr(S2S

−1
S2S

−1
), (24)

where S = n2

n
S1 + n1

n
S2. The F statistic is

TF =
n− 2− θ̂1

(n− 2)p
T

a∼ Fp,v̂, (25)

where θ̂1 = pψ̂1+(p−2)ψ̂2

p(p+2)
, θ̂2 = ψ̂1+2ψ̂2

p(p+2)
and v̂ = (n−2−θ̂1)2

(n−2)θ̂2−θ̂1
. This result concludes this

subsection.

2.3 Simulation Studies

This subsection summarises the simulation studies conducted by Yanagihara and

Yuan (2005) in their research paper and provides additional insights relating to the

performance of the methods. As mentioned in Section 2.1, the authors compared

the 3 (three) methods they developed with 5 (five) other methods. The comparison

metric used is the Type I error (empirical size), i.e. the probability of rejecting

a true null hypothesis. For example, the Type I error of Yanagihara and Yuan’s

(2005) main method (as mentioned in (25)) is P(TF > uα(p, v̂)), where uα(p, v̂) is

the upper α critical value for an F distribution with p and v̂ degrees of freedom.
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The authors chose the nominal size α ∈ {0.1, 0.05, 0.01} and performed simula-

tions on numerous combinations of p, n1, n2, Σ1 and Σ2. For each combination, the

Type I error is estimated by averaging over 30,000 replications. The authors assumed

(WLOG, as shown by Yao (1965)) that Σ1 = diag(λ1, · · · , λp), where 0 < λ1 ≤ · · · ≤

λp < 1 and Σ2 = Ip − Σ1. The quantity called the average absolute discrepancy

(AAD) was introduced. This measures the average of the differences between the

nominal and empirical sizes over a combination of conditions. The figure below

shows one part of the reproduced simulation results. Here, the nominal size is fixed

to be 0.1. T , TF , TB, TMB, T2, TFY , TFJ and TFM refer to the 8 (eight) test consid-

ered mentioned in the same order as in Section 2.1. (1), (2), (3), (4), (5) and (6) refer

to c(0.1, 0.1), c(0.2, 0.5), c(0.2, 0.7), c(0.1, 0.9), c(0.5, 0.5) and c(0.9, 0.9) respectively;
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while (i), (ii), (iii), (iv), (v), (vi) and (vii) refer to c(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),

c(0.1, 0.1, 0.1, 0.5, 0.5, 0.9, 0.9, 0.9), c(0.5, 0.5, 0.5, 0.5, 0.5, 0, 5, 0.5, 0.5), c(0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 0.1, 0.9),c(0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.5), c(0.1, 0.2, 0.3, 0.4, 0.6, 0.7,

0.8, 0.9) and c(0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9) respectively. The black-coloured num-

bers refer to the Type I errors, and the red-coloured numbers refer to the AADs for

all 8 (eight) methods. It can be seen that the AADs of our simulation match those

of the authors’ (the blue-coloured numbers).

It is clear that a small AAD is preferred since it means that on average, the

difference between the empirical size and the fixed nominal size is small. From the

figure above, we see that Yanagihara and Yuan’s (2005) main method gives the

smallest AAD, followed by Krishnamoorthy and Yu’s (2004) method. The exact

conclusion is obtained when the nominal size is fixed to be 0.05 or 0.01.

After doing more thorough simulations, it is found that TF performs very badly

when Σ1 is small, Σ2 is large and n1

n2
is large, while the performance of TFM is more

stable across all conditions. Some examples are given below.

• When α = 0.1, n1 = 100, n2 = 10, Σ1 = diag(rep(0.01, 8)) and Σ2 =

diag(rep(0.99, 8)), the empirical size of TF is 0.022 and that of TFM is 0.139.

• When α = 0.1, n1 = 70, n2 = 7, Σ1 = diag(rep(0.05, 4)) and Σ2 = diag(rep(

0.95, 4)), the empirical size of TF is 0.048 and that of TFM is 0.111.

These results show that perhaps TFM performs better than TF in general.

Apart from comparing Type I errors, it is also useful to compare the powers of

the methods. The power of a test is defined as the probability of correctly rejecting

a false null hypothesis, which is one minus the Type II error probability. Even

though that the simple chi-square approximation method gives the best power, it is

not preferred as it results in a large AAD and does not take the difference of the

covariance matrices into account. Comparing the powers of Yanagihara and Yuan’s

(2005) main method and Krishnamoorthy and Yu’s (2004) method does not give
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any valuable insights other than that their power graphs nearly coincide.
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3 A More General Case of the MBF Problem

3.1 The General Linear Hypothesis Testing (GLHT) Prob-

lem in Heteroscedastic One-Way MANOVA

Recall that for the MBF problem, we have the following formulation:

• y11, y21, · · · , yn11 is an i.i.d. sample drawn from Np(µ1,Σ1).

• y12, y22, · · · , yn22 is an i.i.d. sample drawn from Np(µ2,Σ2).

• Σ1 6= Σ2.

• The null hypothesis is H0 : µ1 = µ2.

We can generalise the MBF problem by including more than 2 (two) i.i.d. sam-

ples and allowing the null hypothesis to be of the form Cµ = c, where µ =

[µ′1,µ
′
2, · · · ,µ′k]′. Consider the following problem formulation, which is known as

the general linear hypothesis testing (GLHT) problem in heteroscedastic one-way

MANOVA:

• y11, y21, · · · , yn11 is an i.i.d. sample drawn from Np(µ1,Σ1).

• y12, y22, · · · , yn22 is an i.i.d. sample drawn from Np(µ2,Σ2).

• · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

• y1k, y2k, · · · , ynkk is an i.i.d. sample drawn from Np(µk,Σk).

• Σi 6= Σj for every i, j ∈ {1, 2, · · · , k} where i 6= j.

• The null hypothesis is H0 : Cµ = c, where µ = [µ′1,µ
′
2, · · · ,µ′k]′ is a vector

of length kp, C is a q × kp matrix with rank q and c is a vector of length q.

It can be easily seen that the MBF problem is just a special case of the general

setting described previously. In particular, setting k := 2, c := 0p and C :=

[1 − 1]⊗ Ip give us the MBF problem. Here, ⊗ denotes the Kronecker product.
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3.2 Zhang’s (2012) Generalisation of Krishnamoorthy and

Yu’s (2004) Method for the GLHT Problem

In his paper titled An Approximate Hotelling T 2-Test for Heteroscedastic One-Way

MANOVA, Zhang (2012) generalised Krishnamoorthy and Yu’s (2004) method to

obtain an approximate solution to the GLHT problem. This subsection explains the

idea behind Zhang’s (2012) method.

For each l ∈ {1, 2, · · · , k}, let µ̂l and Σ̂l be sample mean and sample variance,

respectively. We also let µ̂ = [µ̂′1, µ̂
′
2, · · · , µ̂′k]′. Then µ̂ ∼ Nkp(µ,Σ), where Σ =

diag(Σ1

n1
, Σ2

n2
, · · · , Σk

nk
) is a kp×kp matrix. This means Cµ̂−c ∼ Nq(Cµ−c,CΣC ′),

suggesting the following Wald-type test statistic:

T = (Cµ̂− c)′(CΣ̂C ′)−1(Cµ̂− c), (26)

where Σ̂ = diag( Σ̂1

n1
, Σ̂2

n2
, · · · , Σ̂k

nk
).

We write z = (CΣC ′)−
1
2 (Cµ̂ − c) and W = (CΣC ′)−

1
2 (CΣ̂C ′)(CΣC ′)−

1
2 .

It can be easily seen that under the null hypothesis, z′z ∼ χ2
q. Notice also that

T = z′W−1z and z ∼ Nq(µz, Iq), where µz = (CΣC ′)−
1
2 (Cµ− c).

The main idea of this method is to express W as a Wishart mixture, i.e. a

linear combination of several independent Wishart random matrices, then approx-

imate W with a single Wishart random matrix R ∼ Wq(d,Ω). Since there are

2 (two) unknown parameters, we need to establish 2 (two) equations in order to

uniquely determine the value of the unknown parameters. In this case, we match

the expectation and total variation of W and R. The total variation V[X] of a

random matrix X is defined as the sum of the variances of all the entries of X.

Recall that from Proposition 1.1, we have that if Y ∼ Wp(n,V ), then E[Y ] =

nV and V[Y ] = n(tr(V 2) + (tr(V ))2). In order to derive this method, we first

express C as [C1,C2, · · · ,Ck], where Ci is a q×p matrix for every i ∈ {1, 2, · · · , k}.

We also set Hl = (CΣC ′)−
1
2Cl for every l ∈ {1, 2, · · · , k}. This means H =
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(CΣC ′)−
1
2C = [H1,H2, · · · ,Hk].

Now, see that W = HΣ̂H ′ =
∑k

l=1Wl, where Wl = n−1
l HlΣ̂lH

′
l for every

l ∈ {1, 2, · · · , k}. Recall that Σ̂l ∼ Wp(nl − 1, Σl

nl−1
) for every l ∈ {1, 2, · · · , k},

which implies Wl ∼ Wq(nl − 1, Ωl

nl−1
). Here, Ωl = E[Wl] = n−1

l HlΣlH
′
l. Also, we

have V[Wl] =
tr(Ω2

l )+(tr(Ωl))
2

nl−1
.

Since the Wl’s are independent, we obtain

E[W ] =
k∑
l=1

Ωl = HΣH ′ = Iq and V[W ] =
k∑
l=1

tr(Ω2
l ) + (tr(Ωl))

2

nl − 1
. (27)

By equating (27) with the expectation and total variation of R ∼ Wq(d,Ω), we

easily obtain

Ω =
Iq
d

and d =
q(q + 1)∑k

l=1

tr(Ω2
l )+(tr(Ωl))2

nl−1

. (28)

We are almost done. Recall that we have obtained the approximation W
a∼

Wq(d,Ω). From Proposition 1.2, we derive that under H0, T = z′W−1z
a∼ T 2(q, d).

Using Proposition 1.4, equivalently we have

d− q + 1

qd
T

a∼ Fq,d−q+1. (29)

In reality, the Ωl’s are unknown; they are replaced by their estimators

Ω̂l = n−1
l (CΣ̂C ′)−

1
2ClΣ̂lC

′
l(CΣ̂C ′)−

1
2 . (30)

The test statistic is therefore

TFM =
d̂− q + 1

qd̂
T

a∼ Fq,d̂−q+1, (31)

where d̂ is obtained from d by replacing each occurrence of Ωl with Ω̂l.
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3.3 A Generalisation of Yanagihara and Yuan’s (2005) Main

Method for the GLHT Problem

In this subsection, we apply Zhang’s idea to generalise Yanagihara and Yuan’s (2005)

main method to deal with the GLHT problem.

For each l ∈ {1, 2, · · · , k}, let µ̂l and Σ̂l be sample mean and sample variance,

respectively. We also let µ̂ = [µ̂′1, µ̂
′
2, · · · , µ̂′k]′. Then µ̂ ∼ Nkp(µ,Σ), where Σ =

diag(Σ1

n1
, Σ2

n2
, · · · , Σk

nk
) is a kp×kp matrix. This means Cµ̂−c ∼ Nq(Cµ−c,CΣC ′),

suggesting the following Wald-type test statistic:

T = (Cµ̂− c)′(CΣ̂C ′)−1(Cµ̂− c), (32)

where Σ̂ = diag( Σ̂1

n1
, Σ̂2

n2
, · · · , Σ̂k

nk
).

We write z = (CΣC ′)−
1
2 (Cµ̂ − c) and W = (CΣC ′)−

1
2 (CΣ̂C ′)(CΣC ′)−

1
2 .

It can be easily seen that under the null hypothesis, z′z ∼ χ2
q. Now, notice that

T = z′W−1z = z′z
U

. Here, U = z′z
z′W−1z

.

Since z′z ∼ χ2
p, similar to Yanagihara and Yuan’s (2005) original method for the

MBF problem, it is natural to assume U ≈ χ2
v

φ
, which means v

φp
T

a∼ Fp,v. In order

to approximate the constant v and φ, we calculate the first and second moments of

U asymptotically by means of the identity U = z′z
z′W−1z

and match them with the

facts that E[U ] ≈ v
φ

and E[U2] ≈ v(v+2)
φ2

.

It can be shown that W−1 = Ip − 1√
N
V + 1

N
V

2
+ Op(N

− 3
2 ), where

V =
√
N [(CΣC ′)−

1
2 (C[Σ̂−Σ]C ′)(CΣC ′)−

1
2 ] (33)

and N = n1 +n2 + · · ·+nk− k. Similar to the original method explained in Section

2.2, we have

U = 1 +
1√
N

(z′V z
z′z

)
+

1

N

((z′V z)2

(z′z)2
− z

′V
2
z

z′z

)
+ Op(N

− 3
2 ) and (34)
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U2 = 1 +
2√
N

(z′V z
z′z

)
+

1

N

(3(z′V z)2

(z′z)2
− 2z′V

2
z

z′z

)
+ Op(N

− 3
2 ). (35)

We also have that V and z are independent, and so are z′V z
z′z

and z′z as well as

z′V
2
z

z′z
and z′z (Fang et al., 1990). Taking expectations on both sides of (34) and

(35) and using the established independence conditions, we easily obtain

E[U ] ≈ 1 +
1√
n− 2

E[z′V z]

E[z′z]
+

1

n− 2

(E[(z′V z)2]

E[(z′z)2]
− E[z′V

2
z]

E[z′z]

)
and (36)

E[U2] ≈ 1 +
2√
n− 2

E[z′V z]

E[z′z]
+

1

n− 2

(
3

E[(z′V z)2]

E[(z′z)2]
− 2

E[z′V
2
z]

E[z′z]

)
. (37)

Recall that we already have z′z ∼ χ2
p, so that E[z′z] = p and E[(z′z)2] = p(p+ 2).

Using the same reasoning as mentioned in the derivation of the original method, we

have E[z′V z] = 0. Hence, it remains for us to calculate E[(z′V z)2] and E[z′V
2
z].

We need the following propositions:

Proposition 3.1. Suppose that C = [C1,C2, · · · ,Ck] where Ci is a q × p matrix

for every i ∈ {1, 2, · · · , k}. Then, under H0,

E[z′V
2
z] = N

k∑
i=1

tr(((CΣC ′)−1CiΣiC
′
i)

2) + (tr((CΣC ′)−1CiΣiC
′
i))

2

n2
i (ni − 1)

.

Proof. Notice that under H0, z ∼ Nq(0, Iq). Moreover, V is symmetric. Using

Corollary 2.1.1(1), the law of total expectation and the definition of V as mentioned

in (33), we have

E[z′V
2
z] = E[tr(V

2
)]

= N E[tr((CΣC ′)−
1
2 (C[Σ̂−Σ]C ′)(CΣC ′)−1(C[Σ̂−Σ]C ′)(CΣC ′)−

1
2 ))].

See also that Σ̂−Σ = a1 +a2 + · · ·+ak, where ai = diag(0, · · · , 0, Σ̂i−Σi

ni
, 0, · · · , 0)
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for every i ∈ {1, 2, · · · , k}. Therefore,

E[z′V
2
z] = N

∑
i,j∈{1,2,··· ,k}

E[tr((CΣC ′)−
1
2 (CaiC

′)(CΣC ′)−1(CajC
′)(CΣC ′)−

1
2 ))].

Observe that when i 6= j,

E[tr((CΣC ′)−
1
2 (CaiC

′)(CΣC ′)−1(CajC
′)(CΣC ′)−

1
2 ))] = 0

since ai and aj are independent and E[ai] = E[aj ] = 0. Hence,

E[z′V
2
z] = N

k∑
i=1

E[tr((CΣC ′)−
1
2 (CaiC

′)(CΣC ′)−1(CaiC
′)(CΣC ′)−

1
2 ))].

Now, observe that CaiC
′ = Ci

Σ̂i

ni
C ′i − Ci

Σi

ni
C ′i for every i ∈ {1, 2, · · · , k}. It

can be easily shown that

(ni − 1)CiΣ̂iC
′
i

ni
∼ Wq

(
ni − 1,

CiΣiC
′
i

ni

)
.

Using Corollary 2.2.1(2) by plugging S :=
CiΣ̂iC

′
i

ni
, n := ni, Σ :=

CiΣiC
′
i

ni
and

A := (CΣC ′)−1 and the fact that tr(PQ) = tr(QP ) for any square matrices P

and Q of the same size, we obtain the desired result.

Proposition 3.2. Suppose that C = [C1,C2, · · · ,Ck] where Ci is a q × p matrix

for every i ∈ {1, 2, · · · , k}. Then, under H0,

E[(z′V z)2] = N
k∑
i=1

4tr(((CΣC ′)−1CiΣiC
′
i)

2) + 2(tr((CΣC ′)−1CiΣiC
′
i))

2

n2
i (ni − 1)

.

Proof. Note that using Corollary 2.1.1(2) and the law of total expectation, we have

E[(z′V z)2] = 2E[tr(V
2
)] + E[(tr(V ))2]. Hence, we only need to prove that

E[(tr(V ))2] = N
k∑
i=1

2tr(((CΣC ′)−1CiΣiC
′
i)

2)

n2
i (ni − 1)

.
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See that

E[(tr(V ))2] = N
∑

E[tr((CΣC ′)−
1
2CaiC

′(CΣC ′)−
1
2 )tr((CΣC ′)−

1
2CajC

′(CΣC ′)−
1
2 )],

where the sum is taken over i, j ∈ {1, 2, · · · , k}. Using the same argument as in the

previous proposition, we obtain that

E[tr((CΣC ′)−
1
2CaiC

′(CΣC ′)−
1
2 )tr((CΣC ′)−

1
2CajC

′(CΣC ′)−
1
2 )] = 0

when i 6= j. Furthermore, by means of Corollary 2.2.1(1) (with the same substitu-

tions as above) and the fact that tr(PQ) = tr(QP ) for any square matrices P and

Q of the same size, we are done.

For simplicity, we write

ψ1 = N
k∑
i=1

(tr((CΣC ′)−1CiΣiC
′
i))

2

n2
i (ni − 1)

and ψ2 = N
k∑
i=1

tr(((CΣC ′)−1CiΣiC
′
i)

2)

n2
i (ni − 1)

.

(38)

Using Proposition 3.1, Proposition 3.2 and the fact that z′z ∼ χ2
q, we easily obtain

E
[z′V 2

z

z′z

]
=
ψ1 + ψ2

q
and E

[(z′V z)2

(z′z)2

]
=

2ψ1 + 4ψ2

q(q + 2)
. (39)

We may use the same method as in Section 2.2 in order to determine the corre-

sponding F statistic. First, we let

ψ̂1 = N

k∑
i=1

(tr((CΣ̂C ′)−1CiΣ̂iC
′
i))

2

n2
i (ni − 1)

and ψ̂2 = N

k∑
i=1

tr(((CΣ̂C ′)−1CiΣ̂iC
′
i)

2)

n2
i (ni − 1)

.

(40)

The F statistic can be found to be

TF =
N − θ̂1

Nq
T

a∼ Fq,v̂, (41)
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where θ̂1 = qψ̂1+(q−2)ψ̂2

q(q+2)
, θ̂2 = ψ̂1+2ψ̂2

q(q+2)
and v̂ = (N−θ̂1)2

Nθ̂2−θ̂1
.

3.4 A Proof of the Invariance Properties of the Generalised

Methods

As mentioned in Section 1.3, a desirable approximate solution should satisfy 3 (three)

properties, namely affine invariance, nonsingular invariance and independence of

different labelling schemes. In this subsection, we will show that the generalised

methods described in the previous subsections indeed possess the aforementioned

properties. Note that the definitions of the properties presented in this subsection are

different from those stated in Section 1.3 as we are now dealing with the generalised

MBF problem.

We start by proving the following proposition:

Proposition 3.3. The generalised Krishnamoorthy and Yu’s (2004) method is affine

invariant, nonsingular invariant and independent of different labelling schemes of

the mean vectors.

Proof. From (31), it is easy to see that in order to prove the invariance and inde-

pendence conditions, it suffices to prove that those conditions hold for T and d̂.

Recall that in order to show that an approximate solution is affine invariant, we

need to transform each point yij in each sample into ỹij = Byij + b where B is

any invertible constant matrix with p columns and b any constant vector of length

p. For every l ∈ {1, 2, · · · , k}, denote by µ̃l and Σ̃l the mean and variance of ỹij .

This implies µ̃l = Bµl + b and Σ̃l = BΣlB
′, which means µl = B−1(µ̃l − b).

We define µ̃ = [µ̃′1, µ̃
′
2, · · · , µ̃′k]′ and Σ̃ = diag( Σ̃1

n1
, Σ̃2

n2
, · · · , Σ̃k

nk
). It can be shown

that µ = B̃−1(µ̃ − b̃) and Σ̃ = B̃ΣB̃′, where B̃ = Ik ⊗ B and b̃ = Ik ⊗ b.

Now, we can rewrite the null hypothesis as H̃0 : C̃µ̃ = c̃ where C̃ = CB̃−1 and

c̃ = CB̃−1b̃+ c.

Let ˆ̃µl and ˆ̃Σl be the unbiased estimators for µ̃l and Σ̃l. Observe that ˆ̃µl =
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B̃µ̂l + b̃ and ˆ̃Σl = B̃Σ̂lB̃
′. It follows that ˆ̃µ = B̃µ̂ + b̃ and ˆ̃Σ = B̃Σ̂B̃′. Now,

see that C̃ ˆ̃µ − c̃ = CB̃−1(B̃µ̂ + b̃) − (CB̃−1b̃ + c) = Cµ̂ − c and C̃ ˆ̃ΣC̃ ′ =

(CB̃−1)B̃Σ̂B̃′(CB̃−1)′ = CΣ̂C ′. This shows the affine invariance of T = (Cµ̂ −

c)′(CΣ̂C ′)−1(Cµ̂− c).

Now, we aim to show the affine invariance of d̂. Since

d̂ =
q(q + 1)∑k

l=1

tr(Ω̂2
l )+(tr(Ω̂l))2

nl−1

,

it remains for us to show the affine invariance of tr(Ω̂2
l ) and tr(Ω̂l), where Ω̂l =

n−1
l (CΣ̂C ′)−

1
2ClΣ̂lC

′
l(CΣ̂C ′)−

1
2 . We let Gl = n−1

l ClΣ̂lC
′
l and G = CΣ̂C ′. No-

tice that G =
∑k

l=1Gl and Ω̂l = G−
1
2GlG

− 1
2 . Recall that we have established the

affine invariance property of G. Hence, it remains for us to show that Gl is also

affine invariant. Indeed, this is clear since C̃l = ClB̃
−1 and ˆ̃Σl = B̃Σ̂lB̃

′. Thus, we

have shown that the Krishnamoorthy and Yu’s (2004) method is affine invariant.

Next, we wish to prove the nonsingular invariance of this generalised method.

Note that the nonsingular invariance condition described in Section 1.3 is meant

for the MBF problem. For the generalised setting, we need to show that under for

any invertible constant matrix with q columns P , the null hypothesis H̃0 : C̃µ = c̃

where C̃ = PC and c̃ = Pc is equivalent to H0.

Note that we have C̃µ̂ − c̃ = P (Cµ̂ − c) and C̃Σ̂C̃ ′ = P (CΣ̂C ′)P ′, which

clearly show the nonsingular invariance of T . It remains for us to show the nonsin-

gular invariance of d̂. As above, it is sufficient to establish the nonsingular invari-

ance of tr(Ω̂2
l ) and tr(Ω̂l). We note that C̃l = PCl. This implies G̃l = PGlP

′

and G̃ =
∑k

l=1Gl = PGP ′. From here, we have tr( ˆ̃Ωl) = tr(G̃−
1
2 G̃lG̃

− 1
2 ) =

tr(G̃lG̃
−1) = tr(PGlG

−1P−1) = tr(GlG
−1) = tr(G−

1
2GlG

− 1
2 ) = tr(Ω̂l). Analo-

gously, we obtain that tr(Ω̂2
l ) is also nonsingular invariant.

Lastly, we need to establish that the generalised Krishnamoorthy and Yu’s (2004)

method is independent of different labelling schemes of the mean vectors. To see
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this, we let {l1, l2, · · · , lk} be any permutation of {1, 2, · · · , k}. It is easy to see

that CΣ̂C ′ =
∑k

l=1 n
−1
l ClΣ̂lC

′
l =

∑k
u=1 n

−1
lu
CluΣ̂luC

′
lu

is independent of different

labelling schemes of the mean vectors. Similarly, Cµ̂ − c can be shown to be

independent of different labelling schemes of the mean vectors, and so does T . In

order to show the same holds for d̂, we note that

k∑
l=1

tr(Ω̂2
l ) + (tr(Ω̂l))

2

nl − 1
=

k∑
l=1

tr((GlG
−1)2) + (tr(GlG

−1))2

nl − 1

=
k∑

u=1

tr((GluG
−1)2) + (tr(GluG

−1))2

nlu − 1
.

Now, we will prove that the generalised Yanagihara and Yuan’s (2005) method

also satisfies the invariance and independence conditions.

Proposition 3.4. The generalised Yanagihara and Yuan’s (2005) method is affine

invariant, nonsingular invariant and independent of different labelling schemes of

the mean vectors.

Proof. From (41), it is easy to see that in order to prove the invariance and inde-

pendence conditions, it suffices to prove that those conditions hold for ψ̂1 and ψ̂2.

We do not need to provide a proof that the conditions hold for T as it has already

been mentioned in the proof of Proposition 3.3.

Following the notations used in the proof of Proposition 3.3, we have that

ψ̂1 = N
k∑
i=1

(tr(GiG
−1))2

ni − 1
and ψ̂2 = N

k∑
i=1

tr((GiG
−1)2)

ni − 1
.

Since G and Gl (for every l ∈ {1, 2, · · · , k}) have been shown to be affine invariant,

we can immediately conclude that ψ̂1 and ψ̂2 are affine invariant.

Now, recall that we have established the nonsingular invariance of tr(GlG
−1)

and tr((GlG
−1)2), which clearly imply that ψ̂1 and ψ̂2 are nonsingular invariant.

31



Lastly, note that

ψ̂1 = N
k∑
i=1

(tr(GiG
−1))2

ni − 1
= N

k∑
u=1

(tr(GiuG
−1))2

niu − 1

for any permutation {i1, i2, · · · , ik} of {1, 2, · · · , k}, which shows that ψ̂1 is inde-

pendent of different labelling schemes of the mean vectors. Similarly, ψ̂2 is also

independent of different labelling schemes of the mean vectors; and we are done.

3.5 A Proof of the Equivalence of the Generalised Methods

to the Original Methods in the Context of the MBF

Problem

Recall that the MBF problem is just a special case of the GLHT problem described

in Section 3.1. In particular,the GLHT problem becomes the MBF problem if we

set k := 2, c := 0p and C := [1 − 1] ⊗ Ip. Our aim is to show that setting those

values will reduce both generalised methods to the original methods.

We consider the following propositions:

Proposition 3.5. The generalised Krishnamoorthy and Yu’s (2004) method reduces

to the Krishnamoorthy and Yu’s (2004) method when k := 2, c := 0p and C :=

[1 − 1]⊗ Ip.

Proof. According to (31), the test statistic for the generalised Krishnamoorthy and

Yu’s (2004) method is

TFM =
d̂− q + 1

qd̂
T

a∼ Fq,d̂−q+1,

where

d̂ =
q(q + 1)∑k

l=1

tr(Ω̂2
l )+(tr(Ω̂l))2

nl−1

with Ω̂l = n−1
l (CΣ̂C ′)−

1
2ClΣ̂lC

′
l(CΣ̂C ′)−

1
2 .
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Notice that in the context of the MBF problem, N := n − 2 and q := p. Com-

paring this statistic with the statistic on the top of Page 9 suggests that we only

need to establish the following:

• The test statistic

T = (Cµ̂− c)′(CΣ̂C ′)−1(Cµ̂− c)

is the same as

T = (y1 − y2)′
(S1

n1

+
S2

n2

)−1

(y1 − y2).

• The quantity

d̂ =
q(q + 1)∑k

l=1

tr(Ω̂2
l )+(tr(Ω̂l))2

nl−1

is the same as the quantity

v̂M =
p(p+ 1)(n− 2)

ψ̂1 + ψ̂2

.

First, note that C = [Ip − Ip], and µ̂ = [y1 y2]′ and c := 0p, so that Cµ̂ − c =

y1 − y2. Moreover, we observe that Σ̂ = diag
(
S1

n1
, S2

n2

)
. This means (CΣ̂C ′)−1 =(

S1

n1
+ S2

n2

)−1
. This shows the first statement.

For the second statement, note that (CΣ̂C ′)−1 =
(
S1

n1
+ S2

n2

)−1
= n1n2

n
S
−1

and

CiΣ̂iC
′
i = Σ̂i = Si for i ∈ {1, 2}. Thus,

tr(Ω̂l) =
1

nl
tr((CΣ̂C ′)−1ClΣ̂lC

′
l) =

n1n2

nnl
tr(SiS

−1
)

using the fact that tr(PQ) = tr(QP ) for any square matrices P and Q of the same

size. Similarly,

tr(Ω̂2
l ) =

1

n2
l

tr(((CΣ̂C ′)−1ClΣ̂lC
′
l)

2) =
n2

1n
2
2

n2n2
l

tr(SiS
−1
SiS

−1
).
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Now, since p = q and k = 2, it is now easy to show that d̂ = v̂M using the above

identities. Indeed,

d̂ =
q(q + 1)∑k

l=1

tr(Ω̂2
l )+(tr(Ω̂l))2

nl−1

=
p(p+ 1)

n2
2

n2(n1−1)

(
tr(S1S

−1
) + tr(S1S

−1
S1S

−1
)
)

+
n2
1

n2(n2−1)

(
tr(S2S

−1
) + tr(S2S

−1
S2S

−1
)
)

=
p(p+ 1)(n− 2)

ψ̂1 + ψ̂2

= v̂M .

The proof is now complete.

Proposition 3.6. The generalised Yanagihara and Yuan’s (2005) method reduces

to the Yanagihara and Yuan’s (2005) method when k := 2, c := 0p and C :=

[1 − 1]⊗ Ip.

Proof. According to (41), the F statistic for the generalised Yanagihara and Yuan’s

(2005) method is

TF =
N − θ̂1

Nq
T

a∼ Fq,v̂,

where θ̂1 = qψ̂1+(q−2)ψ̂2

q(q+2)
, θ̂2 = ψ̂1+2ψ̂2

q(q+2)
and v̂ = (N−θ̂1)2

Nθ̂2−θ̂1
with

ψ̂1 = N

k∑
i=1

(tr((CΣ̂C ′)−1CiΣ̂iC
′
i))

2

n2
i (ni − 1)

and ψ̂2 = N
k∑
i=1

tr(((CΣ̂C ′)−1CiΣ̂iC
′
i)

2)

n2
i (ni − 1)

.

Notice that in the context of the MBF problem, N := n − 2 and q := p. Com-

paring this statistic with (25) suggests that we only need to establish the following:

• The test statistic

T = (Cµ̂− c)′(CΣ̂C ′)−1(Cµ̂− c)
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is the same as

T = (y1 − y2)′
(S1

n1

+
S2

n2

)−1

(y1 − y2).

• The quantities

ψ̂1 = N
k∑
i=1

(tr((CΣ̂C ′)−1CiΣ̂iC
′
i))

2

n2
i (ni − 1)

and ψ̂2 = N
k∑
i=1

tr(((CΣ̂C ′)−1CiΣ̂iC
′
i)

2)

n2
i (ni − 1)

are the same as the quantities

ψ̂1 =
n2

2(n− 2)

n2(n1 − 1)
(tr(S1S

−1
))2 +

n2
1(n− 2)

n2(n2 − 1)
(tr(S2S

−1
))2 and

ψ̂2 =
n2

2(n− 2)

n2(n1 − 1)
tr(S1S

−1
S1S

−1
) +

n2
1(n− 2)

n2(n2 − 1)
tr(S2S

−1
S2S

−1
).

Note that the first statement has been shown before. In order to show that the

second statement holds, recall that we have established (CΣ̂C ′)−1 =
(
S1

n1
+ S2

n2

)−1
=

n1n2

n
S
−1

and CiΣ̂iC
′
i = Σ̂i = Si for i ∈ {1, 2}. This implies

N
k∑
i=1

(tr((CΣ̂C ′)−1CiΣ̂iC
′
i))

2

n2
i (ni − 1)

= (n− 2)
2∑
i=1

n2
1n

2
2

n2 (tr(S
−1
Si))

2

n2
i (ni − 1)

=
n2

2(n− 2)

n2(n1 − 1)
(tr(S1S

−1
))2 +

n2
1(n− 2)

n2(n2 − 1)
(tr(S2S

−1
))2

using the fact that tr(PQ) = tr(QP ) for any square matrices P and Q of the

same size. This shows that both the ψ̂1’s above are exactly the same. Analogously,

we can show that both the ψ̂2’s are also exactly the same. Therefore, the proof is

complete.

3.6 Simulation Studies

Similar to Section 2.3, we conducted simulation studies in order to compare the

performance of the methods described in the previous subsections. We also compare
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both methods in terms of their Type I errors. Following Zhang (2012), we set

Σ1 = Ip, Σ2 = diag(λ1, λ2, · · · , λp) and Σl (l ≥ 3) to be some positive definite

matrices, where p, λk’s and the sample sizes will be specified in the next figure. We

also measured the AAD of each method, which indicates the difference between the

nominal and empirical sizes. For each combination of parameters, we simulated over

100,000 replications in order to obtain more stable and accurate results.

The figure below shows the simulation results for trivariate one-way MANOVA

with 3 (three) samples. Here, the nominal size is fixed to be 0.05. TF Gen refers

to the generalised Yanagihara and Yuan’s (2005) method, while TFM Gen refers to

the generalised Krishnamoorthy and Yu’s (2004) method (Zhang’s method). The

black-coloured numbers on the same columns as the methods’ names refer to the

Type I errors, while the red-coloured numbers refer to the AADs. It can be seen
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that the performance of the generalised Yanagihara and Yuan’s (2005) method is

slightly better than that of the generalised Krishnamoorthy and Yu’s (2004) method

for this particular set of parameters.

The figure below shows the simulation results for five-variate one-way MANOVA

with 5 (five) samples. Similar to the above, the nominal size is set to be 0.05. It can

be observed that in this case, the generalised Yanagihara and Yuan’s (2005) method

also has a better performance as compared to the generalised Krishnamoorthy and

Yu’s (2005) method.

3.7 An Alternative Method for the Case of High-Dimensional

Multivariate Normal Distributions

After performing more thorough simulations with different combinations of parame-

ters, it is found that both generalised methods perform very badly when the samples
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are drawn from high-dimensional multivariate normal distributions. In order to see

this more clearly, consider the following results:

• When α = 0.05, n1 = 10, n2 = 100, n3 = 1000, Σ1 = diag(rep(10, 3)),

Σ2 = diag(rep(0.05, 3)) and Σ3 = diag(rep(0.001, 3)), the empirical size of

TF Gen is 0.063 and that of TFM Gen is 0.071.

• When α = 0.05, n1 = 10, n2 = 100, n3 = 1000, Σ1 = diag(rep(1, 3)), Σ2 =

diag(rep(1, 3)) and Σ3 = diag(rep(1, 3)), the empirical size of TF Gen is 0.064

and that of TFM Gen is 0.071.

• When α = 0.05, n1 = 10, n2 = 100, n3 = 1000, Σ1 = diag(rep(10, 8)),

Σ2 = diag(rep(0.05, 8)) and Σ3 = diag(rep(0.001, 8)), the empirical size of

TF Gen is 0.320 and that of TFM Gen is 0.414.

• When α = 0.05, n1 = 10, n2 = 100, n3 = 1000, Σ1 = diag(rep(1, 8)), Σ2 =

diag(rep(1, 8)) and Σ3 = diag(rep(1, 8)), the empirical size of TF Gen is 0.309

and that of TFM Gen is 0.378.

The results above show that ceteris paribus, increasing the dimension of the

multivariate normal populations results in a drastic decline in the performance of

both methods. In order to mitigate this, we introduce an alternative method which

gives a much better size. However, this alternative method may have a low power

so that its usage needs to be controlled.

The idea of this method is to approximate using a constant multiple of a chi-

square distribution the following test statistic:

T = (Cµ̂− c)′(CDC ′)−1(Cµ̂− c), (42)

where D = diag(rep(1/n1, p), rep(1/n2, p), · · · , rep(1/nk, p)). Compare this with

the Wald-type test statistic (Cµ̂− c)′(CΣ̂C ′)−1(Cµ̂− c) used for the generalised

methods we discussed earlier.
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In Section 3.2, we established that Cµ̂− c ∼ Nq(Cµ− c,CΣC ′), which means

that Cµ̂− c ∼ Nq(0q,CΣC ′) under the null hypothesis. Recall that our aim is to

approximate (42) using a constant multiple of a chi-square distribution. In other

words, we need to find the appropriate values of β and d such that

T
a∼ βχ2

d. (43)

Since there are two unknowns, it is natural to match the expected value and

variance of T with those of βχ2
d. First, note that the expected value of βχ2

d is βd,

while the variance is 2β2d. In order to calculate the expected value and variance of

T , we use Proposition 2.1, which states that if y ∼ Np(µ,Σ) and A is a symmetric

p × p constant matrix, we have E[y′Ay] = tr(AΣ) + µ′Aµ and Var[y′Ay] =

2tr(AΣAΣ) + 4µ′AΣAµ. Substituting y := Cµ̂− c, p := q, µ = 0q, Σ := CΣC ′

and A := (CDC ′)−1 (it is easy to check that A is symmetric since D is symmetric)

gives us

E[T ] = tr((CDC ′)−1CΣC ′) and Var[T ] = 2tr(((CDC ′)−1CΣC ′)2). (44)

By matching the expected values and variances of T and βχ2
d as well as substi-

tuting Σ with its unbiased estimator Σ̂, we obtain that

β =
tr(X2)

tr(X)
and d =

(tr(X))2

tr(X2)
, (45)

where X = (CDC ′)−1CΣ̂C ′. Using this method, we obtain the following results:

• When α = 0.05, n1 = 10, n2 = 100, n3 = 1000, Σ1 = diag(rep(10, 8)),

Σ2 = diag(rep(0.05, 8)) and Σ3 = diag(rep(0.001, 8)), the empirical size of

the new method is 0.025 (compare this with 0.320 for TF Gen and 0.414 for

TFM Gen).

• When α = 0.05, n1 = 10, n2 = 100, n3 = 1000, Σ1 = diag(rep(1, 8)), Σ2 =
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diag(rep(1, 8)) and Σ3 = diag(rep(1, 8)), the empirical size of the new method

is 0.034 (compare this with 0.309 for TF Gen and 0.378 for TFM Gen).

From these results, it can be seen that this new method gives a much better size

for the case when the samples are drawn from high-dimensional normal populations.
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4 An Application to the Egyptian Skull Data

4.1 The Egyptian Skull Data

In this subsection, we apply the generalised methods developed in Section 3 to a real

dataset known as the Egyptian Skull data. This dataset, which can be obtained from

https://www3.nd.edu/~busiforc/handouts/Data%20and%20Stories/regression/

egyptian%20skull%20development/EgyptianSkulls.html, contains measurements

of male Egyptian skulls from 5 (five) different time periods: the early predynastic

period (4000 BC), the late predynastic period (3300 BC), the 12th and 13th dynas-

ties (1850 BC), the Ptolemaic period (200 BC) and the Roman period (AD 150).

30 (thirty) skulls are measured from each time period, which means that there are

150 data points in total.

The variables measured for each skull are maximum breadth (X1), borboryg-

matic height (X2), dentoalveolar length (X3) and nasal height (X4), all of which are

expressed in millimetres. A categorical variable X5 indicates the time period of the

skull. An example of a data point is (X1, X2, X3, X4, X5) = (131, 138, 89, 49,−4000).

Following Zhang (2012), we check the significance of the mean vector differ-

ences of the first k samples using only the first 10, 20 and 30 observations, for

k ∈ {2, 3, 4, 5}. In total, we consider 3 × 4 = 12 cases. We compare the gen-

eralised methods with a method called parametric bootstrap (PB) introduced by

Krishnamoorthy and Lu (2010). The PB method has been shown to perform well

in numerous conditions, so that it may be used as a benchmark to compare the per-

formance of the two generalised methods we developed previously (Zhang, 2012).

Despite the remarkable performance of the PB method (Krishnamoorthy and Lu,

2010), this method is less preferred as it requires a lot of bootstrap replications

(Zhang, 2012), which significantly affect the time taken to perform a hypothesis

testing.
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4.2 A Comparison of the Generalised Methods with the

Parametric Bootstrap (PB) Method

The table below compares the p-value obtained from performing hypothesis test-

ings using the generalised Yanagihara and Yuan’s (2005) method (abbreviated to

TF Gen), generalised Krishnamoorthy and Yu’s (2004) method (abbreviated to TFM

Gen) and the PB method. The mean vectors are ordered chronologically; for ex-

ample, µ1 refers to the mean vector corresponding to the skulls from the early

predynastic period (4000 BC), and µ5 refers to the mean vector corresponding to

the skulls from the Roman period (AD 150).

It can be seen that the p-values for all three methods are about the same. How-

ever, for the last two null hypotheses, the generalised Krishnamoorthy and Yu’s

(2004) method gives closer p-values to the benchmark as compared to the gen-

eralised Yanagihara and Yuan’s (2005) method, which tends to overestimate the

p-values. Hence, for this dataset, it seems that the generalised Krishnamoorthy and

Yu’s (2004) is a better method.
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5 Conclusion

In this project, we compare 8 (eight) approximate solutions to the multivariate

Behrens-Fisher (MBF) problem. The Monte-Carlo simulation performed shows that

Yanagihara and Yuan’s (2005) main method (TF ) and Krishnamoorthy and Yu’s

(2004) method (TFM) are the best in terms of the Type I error. A more thorough

simulation reveals that TFM is more stable across different sample sizes and covari-

ance matrices than its counterpart; in the case when Σ1 is small, Σ2 is large and n1

n2

is large, TFM performs quite well whereas TF performs very badly.

We also discuss Zhang’s (2012) generalisation to Krishnamoorthy and Yu’s (2004)

method (TFM Gen), which is capable of dealing with the general linear hypothesis

testing (GLHT) problem in heteroscedastic one-way MANOVA. We then use Zhang’s

(2012) idea to extend Yanagihara and Yuan’s (2005) method (the extension is ab-

breviated to TF Gen). The Monte-Carlo simulations performed for the trivariate

and five-variate cases show that TF Gen is better than TFM Gen in terms of the

Type I error. However, when both methods are applied to the Egyptian Skull data

and compared with the parametric bootstrap (PB) method (Krishnamoorthy and

Lu, 2010) as a benchmark, it is found that TFM Gen is a better method.

We note that both TF Gen and TFM Gen perform very badly when the samples

are drawn from high-dimensional multivariate normal distributions. A new method,

whose test statistic does not depend on Σ̂, is introduced. Although this method gives

a much better size as compared to TF Gen and TFM Gen, it results in a low power.

Further research may therefore focus on developing new approximate solutions to

the GLHT problem in heteroscedastic one-way MANOVA which have reasonable

size and power even in the case of high-dimensional data.
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6 Appendix: R Codes

6.1 Calculating the Empirical Sizes for All Eight Methods

(MBF Problem)

#import necessary libraries

library(MASS)

library(rlist)

#compute empirical size for all eight methods at once

#(MBF Problem as described in Section 2.3)

tall_es <- function(alpha ,p,n1,n2,Sigma1,Sigma2,nrep){

count <- rep(0,8)

for(i in seq(nrep )){

n <- n1+n2

sample1 <- mvrnorm(n=n1,mu=rep(1,p),Sigma=Sigma1,tol=1e-6)

sample2 <- mvrnorm(n=n2,mu=rep(1,p),Sigma=Sigma2,tol=1e-6)

y1bar <- as.matrix(colMeans(sample1))

y2bar <- as.matrix(colMeans(sample2))

S1 <- cov(sample1)

S2 <- cov(sample2)

Sbar <- (n2/n)*S1+(n1/n)*S2

T <- t(y1bar -y2bar )%*% solve(S1/n1+S2/n2)%*%(y1bar -y2bar)

psi1hat <- ((n2**2*(n-2))/(n**2*(n1-1)))*( sum(diag(S1%*%

solve(Sbar ))))**2 + ((n1**2*(n-2))/(n**2*(n2-1)))*

(sum(diag(S2%*% solve(Sbar ))))**2
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psi2hat <- ((n2**2*(n-2))/(n**2*(n1-1)))*( sum(diag(S1%*%

solve(Sbar )%*%S1%*% solve(Sbar )))) + ((n1**2*(n-2))/(n**

2*(n2-1)))*( sum(diag(S2%*% solve(Sbar )%*%S2%*% solve(Sbar ))))

#Method 2

theta1hat <- (p*psi1hat+(p-2)*psi2hat)/(p*(p+2))

theta2hat <- (psi1hat+2*psi2hat)/(p*(p+2))

vhat <- ((n-2-theta1hat )**2)/((n-2)* theta2hat -theta1hat)

T_F <- ((n-2-theta1hat )/((n-2)*p))*T

#Method 3

c1hat <- (psi1hat+psi2hat)/p

T_B <- (1-c1hat/(n-2))*T

#Method 4

beta1hat <- (p*(p+2))/( psi1hat+2*psi2hat)

beta2hat <- -((p+2)*psi1hat )/(2*(psi1hat+2*psi2hat))

T_MB <- ((n-2)*beta1hat+beta2hat)*log(1+T/((n-2)*beta1hat))

#Method 5

upp <- qchisq(alpha ,p,lower.tail=FALSE)

upp_approximated <- upp*(1+((p+2)*psi1hat+(psi1hat+2*psi2hat)*

upp)/(2*p*(p+2)*(n-2)))

#Method 6

ydbar <- y1bar -y2bar

vyhat <- (n**2*(n1-1)*(n2-1)*(t(ydbar )%*% solve(Sbar )%*% ydbar )**

2)/(n2**2*(n2-1)*(t(ydbar )%*% solve(Sbar )%*%S1%*% solve(Sbar )%*%

ydbar )**2+n1**2*(n1-1)*(t(ydbar )%*% solve(Sbar )%*%S2%*%

solve(Sbar )%*% ydbar )**2)
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T_FY <- ((vyhat -p+1)*T)/( vyhat*p)

#Method 7

phijhat <- p+((p-1)*( psi1hat+psi2hat ))/((p+2)*(n-2))

vjhat <- (2*p*(p+2)*(n-2))/(3*(psi1hat+psi2hat))

T_FJ <- T/phijhat

#Method 8

vmhat = (p*(p+1)*(n-2))/( psi1hat+psi2hat)

T_FM <- ((vmhat -p+1)*T)/( vmhat*p)

count[1] <- count[1]+as.integer(T>qchisq(alpha ,p,lower.tail=FALSE ))

count[2] <- count[2]+as.integer(T_F>qf(alpha ,p,vhat ,lower.tail=FALSE ))

count[3] <- count[3]+as.integer(T_B>qchisq(alpha ,p,lower.tail=FALSE ))

count[4] <- count[4]+as.integer(T_MB>qchisq(alpha ,p,lower.tail=FALSE ))

count[5] <- count[5]+as.integer(T>upp_approximated)

count[6] <- count[6]+as.integer(T_FY>qf(alpha ,p,vyhat -p+1,

lower.tail=FALSE ))

count[7] <- count[7]+as.integer(T_FJ>qf(alpha ,p,vjhat ,

lower.tail=FALSE ))

count[8] <- count[8]+as.integer(T_FM>qf(alpha ,p,vmhat -p+1,

lower.tail=FALSE ))

}

return(round(count/nrep ,4))

}
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6.2 Calculating the Empirical Sizes for All Two Methods

(Trivariate One-Way MANOVA)

#import necessary libraries

library(MASS)

library(rlist)

#compute empirical size for all two methods at once

#(trivariate one -way MANOVA as described in Section 3.6)

multitall3_es <- function(alpha ,p,n1,n2,n3,Sigma1,Sigma2,Sigma3,nrep){

count <- c(0,2)

for(i in seq(nrep )){

n <- n1+n2+n3

N <- n-3

q <- 6

sample1 <- mvrnorm(n=n1,mu=rep(0,3),Sigma=Sigma1,tol=1e-6)

sample2 <- mvrnorm(n=n2,mu=rep(0,3),Sigma=Sigma2,tol=1e-6)

sample3 <- mvrnorm(n=n3,mu=rep(0,3),Sigma=Sigma3,tol=1e-6)

C <- cbind(rbind(diag(3),diag(3)),-1*diag(6))

C1 <- C[,c(1,2,3)]

C2 <- C[,c(4,5,6)]

C3 <- C[,c(7,8,9)]

muhat1 <- as.matrix(colMeans(sample1))

muhat2 <- as.matrix(colMeans(sample2))

muhat3 <- as.matrix(colMeans(sample3))

muhat <- rbind(muhat1,muhat2,muhat3)

Sigmahat1 <- cov(sample1)
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Sigmahat2 <- cov(sample2)

Sigmahat3 <- cov(sample3)

zeromatrix <- matrix(0,nrow=3,ncol=3)

Sigmahat <- cbind(rbind(Sigmahat1/n1,zeromatrix ,zeromatrix),rbind(

zeromatrix ,Sigmahat2/n2,zeromatrix),rbind(zeromatrix ,zeromatrix ,

Sigmahat3/n3))

T <- t(C%*% muhat )%*% solve(C%*% Sigmahat %*%t(C))%*%(C%*% muhat)

psi1hat <- N*(sum(diag(solve(C%*% Sigmahat %*%t(C))%*%C1%*%

Sigmahat1%*%t(C1)))^2/(n1^2*(n1-1))+ sum(diag(solve(C%*%

Sigmahat %*%t(C))%*%C2%*% Sigmahat2%*%t(C2)))^2/(n2^2*(n2-1))+

sum(diag(solve(C%*% Sigmahat %*%t(C))%*%C3%*% Sigmahat3%*%

t(C3)))^2/(n3^2*(n3-1)))

J1 <- solve(C%*% Sigmahat %*%t(C))%*%C1%*% Sigmahat1%*%t(C1)

J2 <- solve(C%*% Sigmahat %*%t(C))%*%C2%*% Sigmahat2%*%t(C2)

J3 <- solve(C%*% Sigmahat %*%t(C))%*%C3%*% Sigmahat3%*%t(C3)

psi2hat <- N*(sum(diag(J1%*%J1))/(n1^2*(n1-1))+sum(diag(J2%*%

J2))/(n2^2*(n2-1))+sum(diag(J3%*%J3))/(n3^2*(n3-1)))

#Method 1

theta1hat <- (q*psi1hat+(q-2)*psi2hat)/(q*(q+2))

theta2hat <- (psi1hat+2*psi2hat)/(q*(q+2))

vhat <- ((N-theta1hat )**2)/((N)* theta2hat -theta1hat)

Omega1hat <- (1/n1) * ((C%*% Sigmahat %*%t(C))%^%( -0.5)) %*%

(C1%*% Sigmahat1%*%t(C1)) %*% ((C%*% Sigmahat %*%t(C))%^%( -0.5))

Omega2hat <- (1/n2) * ((C%*% Sigmahat %*%t(C))%^%( -0.5)) %*%

(C2%*% Sigmahat2%*%t(C2)) %*% ((C%*% Sigmahat %*%t(C))%^%( -0.5))

Omega3hat <- (1/n3) * ((C%*% Sigmahat %*%t(C))%^%( -0.5)) %*%
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(C3%*% Sigmahat3%*%t(C3)) %*% ((C%*% Sigmahat %*%t(C))%^%( -0.5))

T_F <- ((N-theta1hat )/((N)*q))*T

#Method 2

K1 <- (sum(diag(Omega1hat%*% Omega1hat ))+( sum(diag(Omega1hat )))^

2)/(n1-1)

K2 <- (sum(diag(Omega2hat%*% Omega2hat ))+( sum(diag(Omega2hat )))^

2)/(n2-1)

K3 <- (sum(diag(Omega3hat%*% Omega3hat ))+( sum(diag(Omega3hat )))^

2)/(n3-1)

dhat <- (q*(q+1))/(K1+K2+K3)

T_FM <- ((dhat -q+1)/(q*dhat ))*T

count[1] <- count[1]+as.integer(T_F>qf(alpha ,q,vhat ,lower.tail=FALSE ))

count[2] <- count[2]+as.integer(T_FM>qf(alpha ,q,dhat -q+1,

lower.tail=FALSE ))

}

return(round(count/nrep ,4))

}

49



6.3 Calculating the Empirical Sizes for All Two Methods

(Five-Variate One-Way MANOVA)

#import necessary libraries

library(MASS)

library(rlist)

#compute empirical size for all two methods at once

#(five -variate one -way MANOVA as described in Section 3.6)

multitall5_es <- function(alpha ,p,n1,n2,n3,n4,n5,Sigma1,Sigma2,Sigma3,

Sigma4,Sigma5,nrep){

count <- c(0,2)

for(i in seq(nrep )){

n <- n1+n2+n3+n4+n5

N <- n-5

q <- 20

sample1 <- mvrnorm(n=n1,mu=rep(0,5),Sigma=Sigma1,tol=1e-6)

sample2 <- mvrnorm(n=n2,mu=rep(0,5),Sigma=Sigma2,tol=1e-6)

sample3 <- mvrnorm(n=n3,mu=rep(0,5),Sigma=Sigma3,tol=1e-6)

sample4 <- mvrnorm(n=n4,mu=rep(0,5),Sigma=Sigma4,tol=1e-6)

sample5 <- mvrnorm(n=n5,mu=rep(0,5),Sigma=Sigma5,tol=1e-6)

C <- cbind(rbind(diag(1,5),diag(1,5),diag(1,5),diag(1,5)),diag(-1,20))

C1 <- C[,c(1,2,3,4,5)]

C2 <- C[,c(6,7,8,9,10)]

C3 <- C[,c(11,12,13,14,15)]

C4 <- C[,c(16,17,18,19,20)]

C5 <- C[,c(21,22,23,24,25)]

muhat1 <- as.matrix(colMeans(sample1))
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muhat2 <- as.matrix(colMeans(sample2))

muhat3 <- as.matrix(colMeans(sample3))

muhat4 <- as.matrix(colMeans(sample4))

muhat5 <- as.matrix(colMeans(sample5))

muhat <- rbind(muhat1,muhat2,muhat3,muhat4,muhat5)

Sigmahat1 <- cov(sample1)

Sigmahat2 <- cov(sample2)

Sigmahat3 <- cov(sample3)

Sigmahat4 <- cov(sample4)

Sigmahat5 <- cov(sample5)

zeromatrix <- matrix(0,nrow=5,ncol=5)

Sigmahat <- cbind(rbind(Sigmahat1/n1,zeromatrix ,zeromatrix ,

zeromatrix ,zeromatrix),rbind(zeromatrix ,Sigmahat2/n2,zeromatrix ,

zeromatrix ,zeromatrix),rbind(zeromatrix ,zeromatrix ,Sigmahat3/n3,

zeromatrix ,zeromatrix),rbind(zeromatrix ,zeromatrix ,zeromatrix ,

Sigmahat4/n4,zeromatrix),rbind(zeromatrix ,zeromatrix ,zeromatrix ,

zeromatrix ,Sigmahat5/n5))

T <- t(C%*% muhat )%*% solve(C%*% Sigmahat %*%t(C))%*%(C%*% muhat)

psi1hat <- N*(sum(diag(solve(C%*% Sigmahat %*%t(C))%*%C1%*%

Sigmahat1%*%t(C1)))^2/(n1^2*(n1-1))+ sum(diag(solve(C%*%

Sigmahat %*%t(C))%*%C2%*% Sigmahat2%*%t(C2)))^2/(n2^2*(n2-1))+

sum(diag(solve(C%*% Sigmahat %*%t(C))%*%C3%*% Sigmahat3%*%

t(C3)))^2/(n3^2*(n3-1))+sum(diag(solve(C%*% Sigmahat %*%t(C))%*%

C4%*% Sigmahat4%*%t(C4)))^2/(n4^2*(n4-1))+sum(diag(solve(C%*%

Sigmahat %*%t(C))%*%C5%*% Sigmahat5%*%t(C5)))^2/(n5^2*(n5-1)))

J1 <- solve(C%*% Sigmahat %*%t(C))%*%C1%*% Sigmahat1%*%t(C1)
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J2 <- solve(C%*% Sigmahat %*%t(C))%*%C2%*% Sigmahat2%*%t(C2)

J3 <- solve(C%*% Sigmahat %*%t(C))%*%C3%*% Sigmahat3%*%t(C3)

J4 <- solve(C%*% Sigmahat %*%t(C))%*%C4%*% Sigmahat4%*%t(C4)

J5 <- solve(C%*% Sigmahat %*%t(C))%*%C5%*% Sigmahat5%*%t(C5)

psi2hat <- N*(sum(diag(J1%*%J1))/(n1^2*(n1-1))+sum(diag(J2%*%

J2))/(n2^2*(n2-1))+sum(diag(J3%*%J3))/(n3^2*(n3-1))+sum(diag(J4%*%

J4))/(n4^2*(n4-1))+sum(diag(J5%*%J5))/(n5^2*(n5-1)))

#Method 1

theta1hat <- (q*psi1hat+(q-2)*psi2hat)/(q*(q+2))

theta2hat <- (psi1hat+2*psi2hat)/(q*(q+2))

vhat <- ((N-theta1hat )**2)/((N)* theta2hat -theta1hat)

Omega1hat <- (1/n1) * ((C%*% Sigmahat %*%t(C))%^%( -0.5)) %*%

(C1%*% Sigmahat1%*%t(C1)) %*% ((C%*% Sigmahat %*%t(C))%^%( -0.5))

Omega2hat <- (1/n2) * ((C%*% Sigmahat %*%t(C))%^%( -0.5)) %*%

(C2%*% Sigmahat2%*%t(C2)) %*% ((C%*% Sigmahat %*%t(C))%^%( -0.5))

Omega3hat <- (1/n3) * ((C%*% Sigmahat %*%t(C))%^%( -0.5)) %*%

(C3%*% Sigmahat3%*%t(C3)) %*% ((C%*% Sigmahat %*%t(C))%^%( -0.5))

Omega4hat <- (1/n4) * ((C%*% Sigmahat %*%t(C))%^%( -0.5)) %*%

(C4%*% Sigmahat4%*%t(C4)) %*% ((C%*% Sigmahat %*%t(C))%^%( -0.5))

Omega5hat <- (1/n5) * ((C%*% Sigmahat %*%t(C))%^%( -0.5)) %*%

(C5%*% Sigmahat5%*%t(C5)) %*% ((C%*% Sigmahat %*%t(C))%^%( -0.5))

T_F <- ((N-theta1hat )/((N)*q))*T

#Method 2

K1 <- (sum(diag(Omega1hat%*% Omega1hat ))+( sum(diag(Omega1hat )))^

2)/(n1-1)

K2 <- (sum(diag(Omega2hat%*% Omega2hat ))+( sum(diag(Omega2hat )))^

2)/(n2-1)

K3 <- (sum(diag(Omega3hat%*% Omega3hat ))+( sum(diag(Omega3hat )))^

52



2)/(n3-1)

K4 <- (sum(diag(Omega4hat%*% Omega4hat ))+( sum(diag(Omega4hat )))^

2)/(n4-1)

K5 <- (sum(diag(Omega5hat%*% Omega5hat ))+( sum(diag(Omega5hat )))^

2)/(n5-1)

dhat <- (q*(q+1))/(K1+K2+K3+K4+K5)

T_FM <- ((dhat -q+1)/(q*dhat ))*T

count[1] <- count[1]+as.integer(T_F>qf(alpha ,q,vhat ,lower.tail=FALSE ))

count[2] <- count[2]+as.integer(T_FM>qf(alpha ,q,dhat -q+1,

lower.tail=FALSE ))

}

return(round(count/nrep ,4))

}
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6.4 Calculating the Empirical Sizes for the Alternative Method

(Trivariate One-Way MANOVA)

#import necessary libraries

library(MASS)

library(rlist)

#compute empirical size for the alternative method

#(trivariate one -way MANOVA as described in Section 3.7)

multitall3custom_es <- function(alpha ,p,n1,n2,n3,Sigma1,Sigma2,Sigma3,

nrep){

count <- 0

for(i in seq(nrep )){

n <- n1+n2+n3

N <- n-3

q <- 16

sample1 <- mvrnorm(n=n1,mu=rep(0,8),Sigma=Sigma1,tol=1e-6)

sample2 <- mvrnorm(n=n2,mu=rep(0,8),Sigma=Sigma2,tol=1e-6)

sample3 <- mvrnorm(n=n3,mu=rep(0,8),Sigma=Sigma3,tol=1e-6)

C <- cbind(rbind(diag(8),diag(8)),-1*diag(16))

C1 <- C[,c(1,2,3,4,5,6,7,8)]

C2 <- C[,c(9,10,11,12,13,14,15,16)]

C3 <- C[,c(17,18,19,20,21,22,23,24)]

muhat1 <- as.matrix(colMeans(sample1))

muhat2 <- as.matrix(colMeans(sample2))

muhat3 <- as.matrix(colMeans(sample3))

muhat <- rbind(muhat1,muhat2,muhat3)
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Sigmahat1 <- cov(sample1)

Sigmahat2 <- cov(sample2)

Sigmahat3 <- cov(sample3)

zeromatrix <- matrix(0,nrow=8,ncol=8)

Sigmahat <- cbind(rbind(Sigmahat1/n1,zeromatrix ,zeromatrix),

rbind(zeromatrix ,Sigmahat2/n2,zeromatrix),rbind(zeromatrix ,

zeromatrix ,Sigmahat3/n3))

D <- cbind(rbind(diag(rep(1/n1,8)),zeromatrix ,zeromatrix),

rbind(zeromatrix ,diag(rep(1/n2,8)), zeromatrix),rbind(zeromatrix ,zeromatrix ,diag(rep(1/n3,8))))

T <- t(C%*% muhat )%*% solve(C%*%D%*%t(C))%*%(C%*% muhat)

X <- solve(C%*%D%*%t(C))%*%C%*% Sigmahat %*%t(C)

beta <- sum(diag(X%*%X))/ sum(diag(X))

d <- (sum(diag(X)))^2/sum(diag(X%*%X))

count <- count+as.integer(T/beta >qchisq(alpha ,d,lower.tail=FALSE ))

}

return(round(count/nrep ,4))

}
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