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1 Introduction
Despite continuous advancements in the field of artificial intelligence (AI) and natural

language processing (NLP), machines are still not intelligent enough to “understand”

events from text, let alone to emulate human level performance. The vast amount of text

data or corpus available in the world further engenders the need to develop tools for this

purpose. These tools should, for example, be able to inform the decision to buy or sell

stocks based on the sentence ”company X is teaming up with company Y on company

Z bid”.

In the understanding of events, the relationship between the components of an event

is an important factor which naturally relates to a subfield in NLP known as thematic

fit : given a verb v and an entity x,evaluate how well v fits x in role r. For example, given

verb-entity tuples (cut, knife), and (cut, bowl), and the role instrument, the former tuple

will have better thematic fit, since knife is more likely to be used to cut an object. Tilk

et al. (2016) simulated thematic fit via selectional preferences, i.e. generating a (|V |−1)-

simplex distribution of possible words to take on a specific role (known as role-fillers).

In particular, given a set of input (word, role) pairs and a target role, the model (called

neural network non-incremental role-filler or NNRF) predicts the correct role-filler for

the target role.

Tilk et al.’s (2016) model architecture can be summarized as follows: for each input

word, a role-specific word embedding is calculated from the factored embedding tensor,

which are then added together and fed to a nonlinear activation layer; this layer is finally

fed into a softmax output layer through the role-specific factored classifier tensor. Despite

its state-of-the-art performance on well-known thematic fit tasks, the NNRF model

suffered from a major limitation. This model does not properly utilize thematic role

input, as evidenced by the sentences apple eats boy and boy eats apple having similar

representations.

This limitation is the key motivation behind Hong et al.’s (2018) multi-task learning

approach, which added a secondary role prediction task to the model. They invented

a new state-of-the-art architecture called ResRoFA-MT, which has been shown to re-

sult in superior performance in thematic fit and event similarity tasks. This model is

derived from NNRF by (1) adding a secondary task of predicting a target role given a

target word; (2) introducing residual blocks; and (3) calculating the event representation

embedding through weighted average of role-filler embeddings.

Hong et al.’s (2018) model also performs well in psycholinguistically-motivated as well

as application-based semantic evaluation tasks. One example is thematic fit correlation,

which uses Spearman’s correlation to correlate the softmax outputs from role-filler pre-

dictions with ratings from participant-based questionnaires from McRae et al. (2005)

[1, 444 verb-agent or verb-patient ratings], Pado (2007) [414 verb-agent or verb-patient

ratings], Ferretti (2001) [274 verb-location or verb-instrument ratings] and Greenberg et

al. (2015) [720 verb-patient ratings]. Another one is semantic role classification, which

involves how well the newly added secondary component of the multi-task model is able

to predict semantic roles on the CoNLL-2005 shared task (Carreras and Màrquez, 2005).
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Our work focuses on experimenting with new architectures which aim to improve the

performance of the current state-of-the-art ResRoFA-MT model (subsequently referred

to as the baseline) mainly in terms of thematic fit evaluation, but will also assess target

role and target word prediction accuracy. As directions of potential improvements to the

model, 6 different parts of the model are focused on: input style, target word input timing,

aggregation, non-sequential input, activation function, and target objective. Experiments

are conducted on a part-by-part basis to make comparisons with the baseline simple and

clear, all of which will be explained in detail in Section 4.

2 Background and Literature Review

2.1 Baseline Model Architecture

The current baseline model used for this project is the state-of-the-art ResRoFA-MT

(Hong et al., 2018), which is a residual network based architecture with multi-task ca-

pabilities to predict both the target role and word given a set of input roles and words.

Figure 1 below provides a visual of the baseline architecture.

Figure 1: Baseline ResRoFA-MT architecture

This subsection explains the mathematics behind the ResRoFA-MT architecture

based on Hong et al.’s (2018) supplemental document. Let T ∈ R|V |×|R|×d be a role-

specific embedding tensor, where |V | denotes the vocabulary size, |R| the number of

possible roles and d the embedding dimension. In order to reduce the number of parame-

ters, the tensor rank decomposition is introduced. This decomposition transforms T into∑k
m=1 am ⊗ bm ⊗ cm, where am ∈ R|V |, bm ∈ R|R|, cm ∈ Rd, and ⊗ denotes the outer

product. Here, k is defined to be the tensor rank of T.

For ease of explanation, the am’s are concatenated by column to form Ae ∈ R|V |×k,

the bm’s by column to form Be ∈ R|R|×k, and the cm’s by row to form Ce ∈ Rk×d. The

event-participant embedding vector T(ij) ∈ Rd (for any word i and role j) can now be

calculated as (Ae(i) ◦Be(j))C, where ◦ denotes the Hadamard product. Similarly, it can

be easily shown that pl = T(ij) = (wiAe ◦ rjBe)Ce, where wi and rj denote the one-hot

encoding of word i and role j, respectively. The event embedding can be simply expressed
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as e = 1
|C|

∑
l∈C PReLU(pl), where |C| denotes the number of (input word, input role)

pairs (assuming no residual block at this moment).

Next, the weight matrices Ww and Wr are defined for each target word ax and target

role by. Stacking Ww for all words and Wr for all roles result in weight tensors T(w) ∈
Rd×|R|×|V | and T(r) ∈ Rd×|V |×|R|. Applying the same tensor rank decomposition technique

as above and concatenating the resulting vectors by row or column to simplify expressions,

it is obtained that Ww = Cwdiag(by)Aw and Wr = Crdiag(ax)Br, where Cw ∈ Rd×k(w)
,

Cr ∈ Rd×k(r) , Aw ∈ Rk(w)×|V |, and Ar ∈ Rk(r)×|V |. Here, k(r) and k(w) denote the tensor

rank of T(r) and T(w), respectively. Upon defining the target role embedding matrices

Bw ∈ Rk(w)×|R| and target word embedding matrix Ar ∈ Rk(w)×|R|, the weight matrices

can be rewritten as Ww = Cwdiag(ryBw)Aw and Wr = Crdiag(wxAr)Br. Now, given

a target word ax and target role by, each of Ww and Wr is fed into a dense layer with a

softmax activation function in order to output the probability vectors of roles and words.

With residual blocks, the Tij is passed to a PReLU layer, i.e. hl = PReLU(rlCe),

where rl = wiAe ◦ rjBe. hl and rl then form an event embedding as governed by the

following equation: e = 1
|C|

∑
l∈C(hlWh + rl). Since this is a multi-task architecture, the

loss function must be a combination of the losses of both tasks. In ResRoFA-MT, the

loss function is simply defined as summing (or equivalently averaging) the cross-entropy

loss obtained from both word and role predictions tasks.

2.2 Thematic Fit Estimation

Prior to Tilk et al.’s (2016) work, models pertaining to thematic fit have been developed

using a distributional memory (DM) framework, which lacks the ability to optimize the

distributional space in a principled way. Departing from Erk et al. (2010)’s work on

syntax-based distributional semantic models (DSMs), Baroni and Lenci (2010) proposed

a DM framework based on prototype vectors by averaging dependency-based vectors of

typical roles. Sayeed and Demberg (2014) then proposed a DSM-like structure which

used a neural network-based SENNA semantic role labeler to define the feature spaces.

A year after, Greenberg et al. (2015) developed a TypeDM or role-based model, which

measured the effects of verb polysemy on thematic fit.

Tilk et al.’s (2016) work was the first to incorporate a neural network-based architec-

ture for thematic fit. The rationale behind their architectural choice was the capability

of a neural network to optimize the distributional representation for the task, an aspect

which hindered the previous models from achieving superior performance on thematic

fit. Two years afterwards, Hong et al. (2018) proposed an improvement to Tilk et al.’s

(2016) non-incremental architecture by introducing a secondary task, allowing the model

to simultaneously predict event participants and classify semantic roles.

2.3 Evaluation Metrics

The models developed were evaluated based on one intrinsic task and one extrinsic task:

(1) prediction accuracy (intrinsic) (2) thematic fit correlation (extrinsic).

3



2.3.1 Prediction Accuracy

Due to the limited data available for evaluating natural language understanding, the

models were trained to predict next word given role labels, and next role given the

word labels. This evaluation technique resulted in the intrinsic evaluation metric of

test/validation word and role accuracies which in theory has an indirect positive

correlation with thematic fit scores.

2.3.2 Thematic Fit

For thematic fit correlation, two different datasets are utilized for evaluation. All the

human judgement ratings presented in the datasets range from 1 (least common) to 7

(most common).

• Pado07 (Pado, 2007): 414 balanced pair of 18 verbs and 12 nouns extracted from

WSJ corpus. Format: agent/patient/role/ratings (e.g. advise, doctor, ARG0, 6.8)

• McRae05 (McRae et al., 2005): 1444 unbalanced pair ratings set. Format: agent/

patient/role/ratings (e.g. advise, doctor, ARG0, 6.8)

The model was tasked to predict scores in order to obtain the Spearman’s correlation

between predicted scores and human judgment scores.

2.4 Potential Issues of Baseline

Figure 2: Potential Issues of Baseline Model

In the baseline model ResRoFA-MT, six potential issues were identified and are pre-

sented in Figure 2: input style, non-sequential input, activation function, aggregation,

target word input timing, target objective. Each of these issues can be investigated and

tested by a new architecture focusing on one change at a time. Input style refers to adding

one-hot encoding to each input word and role in the input layer. The baseline model also

does not take word order into account, so modifying the model to support sequential

information would address the non-sequential input issue. Modifying the activation func-

tion used in the baseline model could also optimize model performance. Furthermore,

the mean aggregation used in the baseline model could be modified or replaced to allow

the model to provide a better summarization of word-role representations. Target word

input timing refers to when the target word and target role is introduced in the model.
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These could be introduced earlier in the model to provide more information about the

target and improve event representation. Finally, since the baseline model utilizes multi-

task learning, modifying the target objective to give more weight to a specific task could

affect model outcomes.

Before diving into further detail about each of the new architectures created to address

these issues, we will first give an overview of the data and experimental setup.

3 Preparation

3.1 Data Overview

The dataset used for the project is the Rollenwechsel-English (RW-eng) corpus, which

is a large corpus of automatically labelled semantic frames extracted from ukWaC and

BNC using Propbank roles. Currently, there are two available versions of the dataset:

V1 (Sayeed et al., 2018) and V2 (Sayeed and Marton, Submitted).

For V1, the dataset is preprocessed by initially passing through the Malt-Parser and

tagged with part-of-speech (POS) tags through syntactic parse trees. Afterwards, the

dataset is parsed using SENNA for semantic role labelling. SENNA (Collobert et al.

2011), which does not rely directly on the syntactic parse of the sentence, outputs pred-

icate words and spans of text connected to the predicate with Propbank style roles. If

the spans of text connected to the predicates are not singleton, the spans of text will

further be processed using three different heuristics (MALT, MALT-SPAN, LINEAR) to

identify head words. If none of these three parsers can detect headwords, the span will

be labelled as FAILED and treated as a single full constituent. The output format of the

pipeline is an XML file that contains multiple predicate tags per sentence, one governor

tag per predicate, and multiple dep tags per predicate. Moreover, in each of the tags,

lemmatized texts are provided combined with words which are annotated in the format

word/POS/N where N is the position of the word relative to the first word in the sentence

starting at 1. Figure 3 shows the schematic of the XML files output for the V1 dataset.

Figure 3: Excerpt of a single annotated predicate from the RW-eng corpus (Sayeed et

al., 2018)

For V2, the output format of the dataset is like that of V1. However, SpaCy (spacy.io)

dependency parser is used in place of the Malt-Parser, and SENNA is replaced with He-
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SRL (He et al., 2017) to obtain a more accurate prediction for both predicates and their

dependencies. In addition, frame tags were added to include the output of He-SRL with

the use of LSGN tagger.

Overall, the RW-eng corpus contains more than 78M sentences, 2.3M documents,

210M predicates and 704M role-fillers. The outputs of SENNA/He-SRL were further

preprocessed to create inputs for modeling. The top 50K most common words plus 1

out of vocabulary (OOV) token combined with seven unique role tags (PRD [predicate],

ARG0 [agent-like], ARG1 [patient-like], ARGM-MNR [manner], ARGM-LOC [location],

ARGM-TMP [temporal], OTHERS) were used for mapping. Due to the large data size,

several training sets utilizing 0.1% (approx. 150k rows), 1% (approx. 1.6M rows), and

10% (approx. 17M rows) of the data was created while the development and test sets

were predetermined to contain 0.4% of the data (approx. 800K rows each). Each of these

files were stored in disk for ease of access during modeling.

The train/dev/test files contains a dictionary of length seven per line with keys refer-

ring to the role ids and values referring to word ids. Each of the known word ids in each

input line is removed one at a time to generate the input data and labels which are later

sent to the model via Python generator expressions. Figure 4 describes how raw files are

turned into input and label data used for modeling.

Figure 4: Transformation from preprocessed files to model input

3.2 Method

3.2.1 Environment Setup

Our code is version controlled through a Github repository and primarily developed in

two environments: Virtual Machine (VM), and Google Colab. For VM development,

Google Cloud was used to create Deep Learning VM with 26GB RAM and T4 GPU

running Python 3.7 and Tensorflow 2.3.0 environment at a cost of $0.4 per hour. Google

Colab was primarily used to prototype and test new code which involved migrating from

Github into Google Drive. In both environments, the only dependencies missing is nltk

data which can be downloaded by running import nltk; nltk.download("all").

In order to validate the original model implementation and conversion, we also used

the Docker image provided in Hong et al.’s (2018) with Python 2.7 and Keras 2.0 envi-

ronment to run the original implementation with Theano backend.
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3.2.2 Conversion of Code to Python 3.7 and Tensorflow 2.3.0

The original code was written in Python 2.7 with Keras 2.0 and Theano, which is currently

unsupported apart from the old Docker image. Prior to implementing the new models in

order to draw comparisons with the current baseline models, the decision was made to

convert the legacy code into Python 3.7 and Tensorflow 2.3.0.

Several key changes were made apart from the syntax conversion from 2.7 to 3.7; These

were creating a custom accuracy metric for Tensorflow to evaluate the model, modifying

file I/O functions in batcher.py to prevent encoding errors, and finally changing the

optimizer from Adagrad to Adam. In conjunction with the latter, the learning rate was

tuned from 0.1 to 0.01 which helped models to avoid being stuck at a local minima during

the training period.

Table 1: Summary of ResRoFA-MT performance on 0.1% data using various implemen-

tations

The original and converted code was left to train on the same 0.1% dataset to produce

results that was within the margin of error as shown in Table 1 to validate the code

conversion process

3.3 Sequential Preprocessing

3.3.1 Input Data

The sequential ordering of words were ignored in both V1 and V2 datasets. As we hy-

pothesize that the ordering of words is salient for the task of thematic fit estimation,

ordering information is included into both the V1 and V2 datasets. Instead of keeping

the ordering of the role-ids constant, the role-ids were ordered in the appearance order of

the corresponding words, which were obtained by tracking N from the given word/POS/N

format in the datasets, where N is the position of the word relative to the first word, to

incorporate sequential information into the datasets. Python 3.7+ offered ordered dic-

tionaries as a default feature of dictionaries, and was utilized to keep the data format

consistent while taking into account the sequential orderings. In the case of out of vo-

cabulary (OOV) tokens with word-id 50001, the roles were ordered in increasing order

within the ordered dictionary, after the roles corresponding to existing vocabulary. Figure

5 is an example of the sequentially preprocessed data (same format for both V1 and V2

datasets). Note that through this preprocessing, there were cases where the vocabulary

dictionary word-ids became inconsistent between non-sequential and sequential data (Ex.

word-id of the word “banker” in non-sequential data was 1310, whereas it was 1284 in

sequential data).
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Figure 5: A single dictionary sample of a row in the preprocessed files

3.3.2 Evaluation Metrics

As a result of the difference in preprocessing input pipeline for sequential models, further

modification to the evaluation files was needed to align the format with the preprocessed

inputs. In the original evaluation files, the evaluation data was passed on to the model

based on the input ordering specified in description.txt file in the data folder. In the

modified evaluation files, word ordering is taken into consideration where words and roles

that occur first are placed at the start of the input array. Then, word input arrays are

post-padded with the Missing word token (50001) until length 6, and role input arrays

are post-padded with other roles not present in the input/label in ascending order. The

role padding ensures that all 7 roles are present in either the input or label array.

For example, in Pado evaluation, the line “advise banker ARG0 6.0” was converted

to input word [50001, 50001, 50001, 1310, 50001, 50001] by the original evaluation files

because of the fixed ordering of the roles specified in the description file as [4,2,1,5,3,6]. As

a result, known word ids (non-50001) could be found anywhere throughout the sequence.

However, in the modified process, the same input would be preprocessed to [1310, 50001,

50001, 50001, 50001, 50001] and [5, 1, 2, 3, 4, 6] such that known word ids are placed in

front of the padding tokens.

Figure 6: Input to evaluation files for word probability prediction

Figure 6 shows the difference between the original evaluation files and modified eval-

uation files for Pado and McRae thematic fit evaluation. These modifications were per-

formed across all five evaluation files (Pado, McRae, Bicknell, Greenberg, GS) such that

the input arrays could be passed on to the models to obtain the next word probabilities

given the target word.

4 Proposed Model Architectures
For each of the aforementioned issues of the ResRoFA-MT architecture, modifications

which could potential improve the performance of thematic fit were made on the archi-

tecture. To better understand the reasoning behind improvements or deterioration, we

ensured the architecture was modified on a part-by-part basis.
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4.1 Modification of Input Style

To address the input style of the baseline model, a new architecture was proposed based

on a well known wide-and-deep learning architecture (Cheng et al., 2016), which has been

shown to perform well on recommendation tasks. The model’s main feature is the com-

bination of sparse and dense information. Our ResRoFWD-MT model implementation,

shown in Figure 14, modifies the baseline by adding a one-hot encoding of each input

word and role and combines it with the input word-role embedding before being passed

into the PReLU layer.

4.2 Modification of Target Word Input Timing

The baseline model introduces the target word and the target role after the dense layer.

An attempt at modifying the target word input timing would be introducing the target

word and role earlier in the model. The ResRoFBeg-MT model, as shown in Figure 15,

achieves this by introducing the target word and role in the dense layer. This design would

potentially improve model performance as the event representation will have information

about the target. This modification reduces the tensor factorization from 2 to 1, but

introduces two task-specific dense layers.

4.3 Modification of Aggregation

Recall that the baseline model uses a mean aggregation layer to generate the event rep-

resentation. We attempted to substitute this aggregation layer using a dense layer (with

the same number of neurons) as shown in Figure 16. We call this model ResRoFDense.

The rationale behind this is to allow the neural networks to automatically find a func-

tional form which best summarizes the (input word, input role) representations in the

form of an event embedding. Some simple modifications of this model involved adjusting

the number of dense layers and neurons in each layer. For an apples-to-apples comparison

with the baseline model, we chose a single dense layer shown in Figure 16.

4.4 Modification of Non-Sequential Input

4.4.1 Applying RNN, LSTM, BiLSTM

One possible attempt at improving ResRoFA-MT would be to take the ordering of the

input word-role pairs into account. This implies that we need to design a way to combine

the individual word-role embeddings (i.e. the parametric ReLU outputs) to form an

aggregated event embedding in a way that incorporates event participants’ ordering. Not

only that, this attempt induces the need for modified input preprocessing and evaluation

scripts which ensure correct ordering of the event participants, which has been explained

in Section 3.3.

The architectures we developed are based on recurrent neural networks (RNNs), well-

known for their ability to connect previous information to the present task (Olah, 2015).

Figure 17 illustrates an unrolled RNN layer.

Starting with a sequence of inputs (x1, x2, · · · , xT ), an RNN produces sequences of

hidden states (a1, a2, · · · , aT ) and output states (h1, h2, · · · , hT ) according to the equa-

tions at = tanh (b+Wat−1 + Uxt) and ht = c + V at, where U, V,W, b, c are learnable
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parameters. The output state corresponding to the last time step (i.e. hT ) should then

be able to “summarize” information provided by the input sequence.

Long short term memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) are

an extension of RNNs designed to learn long distance dependencies, i.e. remembering

information for long periods of time. This property is achieved by adding gates to add,

remove or forget information over time. Mathematically, we can express this through

a “forget gate layer” ft, “input gate layer” it, “output layer” ot and keeping track of

cell states Ct and C̃t shown in Figure 18. The relationships between those variables are

governed by the following set of equations: ft = σ(Wf ·[ht−1, xt]+bf ); it = σ(Wi·[ht−1, xt]+
bi); C̃t = tanh(WC · [ht−1, xt] + bC); Ct = ft ∗Ct−1 + it ∗ C̃t; ot = σ(Wo[ht−1, xt] + bo); and

ht = ot ∗ tanh(Ct).

Lastly, bidirectional LSTMs (BiLSTMs) (Schuster and Paliwal, 1997) generalize LS-

TMs by allowing for information to pass from both forward and backward directions.

This is achieved by having two LSTM layers, one corresponding to each direction.

We aimed to improve ResRoFA-MT by allowing for the event representation to be

generated by either RNNs, LSTMs or BiLSTMs. The ResRoFSeqRNN-MT model re-

places the mean aggregation layer in ResRoFA-MT with RNN blocks, in which the hid-

den layer output corresponding to the last time step acts as the event embedding. The

ResRoFSeqLSTM-MT model is similar to ResRoFSeqRNN-MT, with RNN blocks re-

placed by LSTM blocks. Figure 19 provides a visual of these architectures. In addition,

an architecture which stacks three LSTM layers (ResRoFSeqDeepLSTM-MT) is also con-

sidered. A diagram for this architecture can be easily derived from Figure 19.

In addition, two Bi-LSTM based models are considered. The ResRoFSeqBiLSTM-MT

model adds the hidden layer outputs corresponding to the last time step of the forward

and backward LSTMs in order to form an event embedding. On the other hand, the

ResRoFSeqBiLSTMDense-MT model concatenates these hidden layer outputs, and pass

it to a dense layer to preserve the output length; the dense layer output is the event

embedding. Diagrams for these architectures can be found in Figure 20 and 21.

4.4.2 Applying Attention

The attention mechanism (Vaswani et al., 2017), which can be loosely defined as the

assignment of weights to hidden states, has been proved effective in many recent natural

language processing (NLP) applications. The weights (or “attention”) resemble how hu-

mans tend to focus on specific parts of an input, rather than viewing the input as a whole.

Specifically, for a sequence of inputs (x1, x2, . . . , xT ), the hidden layers produce a sequence

of hidden states (h1, h2, . . . , hT ). Given contextual information for the encoder ct, the at-

tention score for the hidden state ht can be computed as α = softmax(e1, e2, . . . , eT ) where

et = f(ct, ht) (f is usually chosen to be a non-linear function). The attention mechanism

is applied to the hidden states by the summation
∑T

t=1 αtht, which becomes the represen-

tation that is pushed to the next layer of the model. When there is no given contextual

information ct, ht could be used in place of ct, resulting in a mechanism generally known

as self-attention.

We experimented with introducing self-attention mechanisms to the architecture,

which can be included after a BiLSTM layer or directly after the embedding layer. The
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former leads to a model called ResRoFSeqBiLSTMAt-MT, which is a modification of

ResRoFSeqBiLSTM-MT in which the event embedding is obtained by applying an ad-

ditive attention mechanism (Bahdanau, 2015) to the concatenation of the forward and

backward hidden layers. The latter leads to a model called ResRoFSeqAt-MT, in which

the individual event participant embeddings are immediately followed by an additive at-

tention mechanism. The diagrams for these architectures can be found in Figure 7 and

22. The attention calculation for Figure 22 is the same as that for Figure 7, and hence is

omitted for easier view.

Figure 7: ResRoFSeqAt-MT architecture

4.4.3 Applying CNN

Experimenting with Computer Vision techniques such as Convolution based architec-

tures help provide an alternative perspective of modelling. By stacking Conv1D and

MaxPool1D layers, the main idea is to convolve or extract information from the event

rather than applying a mean aggregation. Convolution neural networks are known to

be attractive for reasons such as weight sharing and exploiting spatial information. For

brevity, this model was discontinued due to its poor performance in semantic role la-

belling and thematic scores, but a diagram for the architecture can be found in Appendix

23.

4.5 Modification of Activation Function

It has been mentioned that one of the differences between Hong et al.’s (2018) ResRoFA-

MT model and Tilk et al.’s (2016) NNRF model is the introduction of parametric ReLU

(PReLU) layers which provides a parametric weighted mean of the role-filler embeddings.

Using the notations in Figure 8, the parameters learned by the PReLU layers in ResRoFA-

MT are ai,j for i ∈ Z+, i ≤ 6 (number of word-role pairs in each input) and j ∈ Z+, j ≤ 256

(dimension of embeddings).

Considering that the ResRoFA-MT inputs are not ordered, we thought it might be

a good idea for the PReLU block corresponding to each time step to learn the same

parameters. In particular, we want our learned weights to satisfy αi,j = αk,j for all i, k, j.
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This means that instead of learning 6 × 256 = 1, 536 parameters, we are learning only

256 parameters.

The above-mentioned modification results in an architecture called ResRoFAShared

PReLU-MT. Also, we experimented with a special case of ResRoFASharedPReLU-MT

with αi,j = 0.3 (the default parameter for Leaky ReLU in Keras) for all i, j. This archi-

tecture is referred to as ResRoFALeakyReLU-MT. Lastly, as the original implementation

of ResRoFA-MT seems to induce ordering due to different parameters learned in each

time step, we decided to also train ResRoFA-MT on the sequentially preprocessed data

described in Section 3 in an architecture called ResRoFASeq-MT.

Figure 8: Zooming into a PReLU layer

4.6 Modification of Target Objective

In Hong et al.’s (2018) original implementation of ResRoFA-MT, the overall loss function

is defined as L = L(w)(C, rt) + αL(r)(C,wt) with α = 1. Here, L(w)(C, rt) and L(r)(C,wt)

denote the usual cross entropy loss for the word and role classification task, respectively.

Having α = 1 can be seen as providing a balance between these two tasks. We decided to

experiment with different α 6= 1 parameters to see whether this may result in an improve-

ment of ResRoFA-MT. In particular, we tried varying α to be one of {0.5, 0.75, 1.5, 2}. It

can be easily deduced from the loss function form that α > 1 causes the model to focus

more on role prediction, and α < 1 causes the model to focus more on word prediction.

Besides varying the loss function, we can modify the target objective by adding or

removing tasks in the multi-task learning setting. For example, we may find new sets of

tasks (other than word and role predictions) which correlate better with thematic fit and

allow for parameter estimations using a large amount of available data. This is definitely

an interesting direction for future research.

4.7 Results and Discussion

In this section, we discuss the the results on the 10% and 1% dataset on both V1 and V2.

Note that only high performing models were trained on the 10% data set. The 10% dataset
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experiments (available in Figure 9) were trained using Python 3.7 and Tensorflow 2.3.0 in

Google Cloud VM environment with 26GB RAM and T4 GPU. For the 1% experiments,

these were trained using the Google Colab environment; additional results can be found

in Appendix 3, 4 and 5.

Figure 9: Selected model results on 10% V1 and V2 data

4.7.1 Modified Baseline Architectures

The ResRoFBeg-MT model was trained on the 10% data whilst both ResRoFWD-MT

and ResRoFDense-WT were only trained using the 1% data. Initially, the ResRoFBeg-

MT model showed potential in the 1% V1 data; with identical role/word accuracy scores

against the baseline, along with thematic scores 26.4 and 16.5 for Pado-All and McRae-

All. However for the 10% V1 data, the Pado-All and McRae-All scores dropped to 18.3

and 16.8 in Figure 9. As for semantic role labelling performance, it performed identically

to the baseline model at 94.4% and 9.2% for role/word accuracy.

As for the ResRoFWD-MT model, it initially performed extremely well for recom-

mendation tasks with 99.9% role accuracy using the 1% V1 dataset, yet it consistently

performed poorly in thematic fit scores with negative values. The residual layer had origi-

nally improved the thematic scores from -6.7 to 10.7 (Pado-All) and 7.3 to 9.7 (McRae-All)

using the 1% V1 data. However, running the model on 10% data showed both Pado-All

and McRae-All scores dropping significantly to 3.0.

The ResRoFDense-MT model did not perform well for the 1% V1 data with only

2.1 and 7.1 Pado-All/McRae-All thematic scores. We found that increasing the number

of dense layers from one to two marginally increases its scores to 5.7 and 7.3 Pado-

All/McRae-All. Interestingly, our results suggests that a single dense layer may not fully

capture an event embedding representations; and more complex architectures using dense

layers may yield better results.

In all the modified baseline models, residual learning is applied. It’s effects are known

to reduce the challenges of vanishing gradients when computing factorized tensors (He

et al., 2016). For models ResRoFBeg-MT, ResRoFWD-MT and ResRoFDense-WT, we

found that adding residual networks may improve thematic fit correlation, but may not

affect semantic role labelling.
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4.7.2 Attention and PReLU Architectures

The models ResRoFSeqAt-MT, ResRoFALeakyReLU and ResRoFASharedPReLU recorded

promising results on thematic fit scores. In particular, ResRoFSeqAt-MT performed

strongly on all metrics except role accuracy; with 9.5% word accuracy and 52.3/39.5 for

Pado-All/McRae-All scores. Our results suggests that the positional weightings com-

puted for each tasks in ResRoFSeqAt-MT are beneficial, allowing more important inputs

to be focused. This prompted us to dive deeper to try different variations of Attention

mechanisms in the next section.

Interestingly, the ResRoFSeqAt-MT model recorded lower role accuracy scores in

both V1 and V2 datasets. Note that the drop in role accuracy from 94.4% to 87.8%

was more prominent in the 10% V1 data; as compared to 97.2% to 93.5% in the 10%

V2 data. To investigate why, the baseline model was also trained using sequential data.

The sequential baseline model tend to perform better in thematic scores but not role

accuracy. This suggests that input word ordering alone can affect semantic role labelling

and thematic fit scores.

As for the PReLU models, the thematic scores for ResRoFALeakyReLU and ResRo-

FASharedPReLU decreased from the baseline scores to 34 and 36.3 (Pado-All), 38.1 and

37.3 (McRae-All) in Figure 9. This is likely due to having less parameters and no po-

sitional weightings as described in the original paper (Hong et al., 2018). The decrease

in thematic fit scores is possibly due to the learning rate being too high; combined with

indirect modelling of tasks between predicting role/word accuracy and thematic fit using

the PReLU function. Furthermore, it is observed that forcing the learnable parameter to

be the same in PReLU across time steps may increase thematic fit scores at the expense

of lower role accuracy.

5 Further Modifications

5.1 Modification of Attention Mechanism

Bahdanau’s (2015) additive mechanism is just one of many attention mechanisms used

in the literature. A list of all self-attention based models we experimented, which are all

based on the literature, can be found in Table 2.

Mechanism Scoring function Learnable parameters Model name

Additive

(Bahdanau, 2015)
et = tanh (Wht + b) W, b ResRoFSeqAt-MT

Location-based

(Luong, 2015)
et = Wht + b W, b ResRoFSeqAtLoc-MT

General

(Luong, 2015)
et = hᵀtWht W ResRoFSeqAtGen-MT

Dot product

(Luong, 2015)
et = hᵀtht None ResRoFSeqAtDot-MT

Scaled dot product

(Vaswani, 2017)
et = hᵀtht/

√
n None ResRoFSeqAtScaledDot-MT

Table 2: Summary of self-attention based architectures and their scoring functions
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In addition, an extension of the attention mechanism has shown that the introduction

of task-specific attention increases generalization and performance of the tasks at hand

in multi-task model settings (Liu et al., 2019). For a task l, the contextual information

ctl together with the hidden state information ht forms a set of attention weights αl =

softmax(e1l, e2l, ..., eT l), where etl = f(ctl, ht). According to Liu et al. (2019), task-specific

attention allows the model to give attention to hidden layers in various ways depending

on the task, thus resulting in an increased model generalization and performance. Based

on this idea, an architecture called ResRoFSeqTargAt-MT modifies ResRoFSeqAt-MT

by having one attention mechanism for each task (i.e. one for word prediction and one

for role prediction). Here, for the word prediction task, the contextual information is

a target role one-hot encoding vector, and for the role prediction task, the contextual

information is a target word one-hot encoding vector. The diagram for this architecture

can be found on Figure 10.

Figure 10: ResRoFSeqTargAt-MT architecture

5.2 Combining Modifications

In this section, we wanted to see the impact of the combination of modification to the

activation function combined with target word input timing, and the activation function

combined with non-sequential inputs. For all the models created by this combination,

shared axes = [1] was added to the PReLU layers to convert it to a Shared PReLU

model with 256 parameters.

5.3 Results and Discussion

Results of modifying the attention scoring function and the introduction of task-specific

attention are shown in Figure 11. In terms of validation role accuracy, the baseline model

dominated the other models when all models were trained with 10% of V1 and V2 data.

The ResRoFSeqAT-MT model had the highest validation word accuracy among all the

other sequential attention model variants and the baseline. In terms of the Pado-All

thematic fit evaluation, the ResRoFSeqTargAt-MT consistently performed well for both

10% V1 and V2 data, hinting that task-specific attention allowed the model to capture

more of the essential information of the input by utilizing the reference about the specific

task. However, regarding the McRae-All thematic fit evaluation, the baseline performed

better than the other sequential attention models when models were trained with V2
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Figure 11: Attention extension results

data. Noting that the superiority of the baseline in terms of V2 McRae-All evaluation

is relatively small compared to the differences in Pado-All and the V1 data McRae-All

evaluation, and considering the fact that McRae-All is an unbalanced evaluation dataset,

the baseline results here may have occurred due to chance and/or the baseline trained on

the V2 dataset favoring a certain type of instance. To confirm this, we look deeper into

the individual role-level thematic fit performance of the representative models ResRoFA-

MT, ResRoFSeqAt-MT, and ResRoFSeqTargAt-MT that were trained on V1 and V2

(Figure 12).

Figure 12: Role-specific thematic fit scores

We notice that in most cases for these models, the shift from V1 to V2 increased the-

matic fit performance for examples that included ARG0 [agent-like] and ARG1 [patient-

like], but on the other hand thematic fit performance decreased for examples that in-

cluded other roles such as ARGM-LOC [location], ARGM-MNR [manner] and ARG2

[instrument], except for the combination of ResRoFA-MT and ARG2. In general, the

performance declination could be caused due to a known issue in He-SRL, which is

that it confuses ARG2 with other roles such as ARGM-LOC and ARGM-MNR. For

the ResRoFA-MT though, there was an increase in performance, which could be thought

that since ResRoFA-MT had fewer parameters and a simpler non-sequential architec-

ture, it was less likely to overfit to invalid data, compared to the ResRoFSeqAt-MT and

ResRoFSeqTargAt-MT models, which consists of additional parameters from the atten-

tion mechanism and sequential characteristic.
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But in general the increase in thematic fit performance for examples with ARG0 and

ARG1 was greater in magnitude compared to the other roles, which led to an improvement

in thematic fit most of the time.

Results of modifying the activation function to SharedPReLU are shown in Figure

13. For the sequential attention models, thematic fit performance was better when the

original PReLU was used for the activation function, but for the ResRoFSeqTargAt-MT,

the McRae-All was slightly better with the SharedPReLU activation function. Again, this

could be thought of as a phenomenon that happened by chance, or due to the McRae-All

being an unbalanced patient/agent dataset. More analysis and experiments would need

to be conducted to confirm this.

Figure 13: Activation extension results

6 Ethical Considerations

Even if a model produces promising results in terms of thematic fit, ethical considerations

have to be made for both the data and the models to prevent consequences that could

possibly harm others. These consequences include bias, privacy issues, security threats,

noncompliance to laws and regulations, transparency issues, and unintended use cases.

Below we describe some consequences that may arise in our research setting in terms of

the data and the model, and some possible actions we could take for prevention.

6.1 Bias

Regarding data, bias could be introduced from historically biased data, specifically re-

garding sensitive attributes such as race and gender. This is usually introduced from the

uneven attribute proportions in the data, and it could affect how the model makes pre-

dictions. For example in our setting, it is easy to imagine a case where for the predicate

“work”, “man” could be given higher probability to be the subject than “woman” due

to historical reasons. In addition, only the most common 50,000 words were extracted

from the data, which biases the distribution of words, because they do not become rep-

resentative of the word distribution in real life. The limitation in the number of words

also causes the thematic fit evaluation set to have less samples, since samples that do not

include the words are filtered out. Therefore, the data that the model reads in is biased,

and the evaluation of the model has some bias as well.
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Regarding the model, if the model architecture is designed based on a model designer’s

strong assumptions, it could introduce bias in the predictions. This includes the physical

connections between layers, activation functions, loss functions, and any other hyperpara

meter-related setting that the model designer decides on.

To mitigate bias in data, a simple extension of allowing more words to be included

into the data could be helpful, as well as filtering out sensitive words that could introduce

discrimination. The model should be constructed so that the model designer’s assump-

tions do not dominate the model, and prevent the model from being trained flexibly.

6.2 Privacy Concerns

As mentioned earlier, we use the RW-eng data to train our models. The RW-eng data

uses the ukWaC and BNC data sets as data sources, and if there are privacy concerns

embedded in these original data sources, the RW-eng data could also be vulnerable to

them. Unfortunately, ukWaC contains personal pages, blogs, and postings, while BNC

contains school and university essays in their data, which could introduce privacy concerns

for the RW-eng data as well. Since the RW-eng, ukWaC, and BNC datasets are all

available online, and in the case they include information that is private, it is challenging

to remove that information from the web. Even so, measures such as removing pronouns

could be taken to ensure privacy for the dataset and model in our research setting.

6.3 Security Threats

This falls down to where and how the data and model files are stored. Currently, data is

stored within Google Cloud services, or on local machines. Since Google Cloud services

consider security as a core competency, although it is a black box, it should be much

more secure than storing data locally. Storing data locally allows the team to conduct

experiments and scripts on personal machines, making the project proceed more effi-

ciently, but introduces vulnerabilities specifically regarding the manipulation of data by

malicious parties or viruses. The same issue arises for the weights of the saved models;

weights saved locally could be manipulated causing models to produce incorrect predic-

tions. Losing efficiency in a short-term project is punishing, but efforts should be made

to keep the majority of the project running on secure locations such as Google Cloud.

6.4 Laws and Regulations

Currently there are no laws and regulations that the project is not compliant with, to the

knowledge of the team. In the case there is actual confidential information that harms

individuals included in the dataset, swift actions should be taken to remove all of the

applicable data and models, and take action to support all that were affected.

6.5 Transparency

The mechanism behind the creation of the RW-eng data could be obscure, since the RW-

eng data is created using the pre-existing semantic role labeler SENNA, where the role
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labeling algorithm could be difficult to decipher. In addition, there is a lack of trans-

parency in the evaluation of thematic fit, due to an indirect link between the task the

model is trained for and thematic fit. The usage of neural networks for our model also

hinders our understanding of the logic behind the predictions. Understanding SENNA

and clearly describing the steps of the role labeling will improve transparency, and cu-

mulatively making changes to the model architectures will help with the understanding

of how models are functioning, leading to better transparency.

6.6 Unintended Use Cases

The RW-eng data could possibly be used for fake news generator training, and for obtain-

ing personal information in the case personal information was included in the previously

mentioned ukWaC and BNC data sets. It is extremely difficult to prevent fake news

generator training, but the removal of personal information is an action that could be

taken.

7 Conclusion and Future Work

7.1 Conclusion

In this report, we explore different modifications to ResRoFA-MT, a state-of-the-art

model for thematic fit developed by Hong et al. (2018). These modifications are made

on the (1) input style; (2) target word input timing; (3) aggregation function; (4) non-

sequential input; (5) activation function; and (6) target objective. We observe that the

first three modifications consistently result in lower thematic fit scores as compared to

the baseline. The fourth modification, which involves modifying the model input to be

sequential and employing the attention mechanism, sees a significant increase in thematic

fit scores for both V1 and V2 data, except the McRae score on V2 data. However, this

model achieves a lower role accuracy than the baseline. Further exploration on the at-

tention mechanism results in a multi-task attention model called ResRofSeqTargAt-MT,

which achieves the highest Pado score for both V1 and V2 data. The fifth modifica-

tion generally results in lower thematic fit scores, while the sixth modification does not

significantly impact the model performance.

7.2 Future Work

Additional experiments and analysis needs to be conducted to provide stronger reasoning

for the results of our model, such as investigating more deeply into why in certain models

McRae-All evaluation performs worse than the baseline, examining why sequential models

generally have lower role accuracies, and training all models on the V1 and V2 10% data

to provide more consistent and complete results. Furthermore, as new directions into this

research, exploring new target objectives and adding or removing tasks, and collaborating

with Team 1 to combine word embeddings and architectures could improve thematic fit

performance.
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A Appendix

A.1 Additional Figures

Figure 14: ResRoFWD-MT architecture

Figure 15: ResRoFBeg-MT Model

Figure 18: Zooming into an LSTM cell (Olah, 2015)
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Figure 16: ResRoFDense-MT architecture

Figure 17: An unrolled RNN layer (Olah, 2015)

Figure 19: ResRoFSeqRNN-MT (with hi = RNNi) and ResRoFSeqLSTM-MT (with

hi = LSTMi) architectures
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Figure 20: ResRoFSeqBiLSTM-MT architecture

Figure 21: ResRoFSeqBiLSTMDense-MT architecture

Figure 22: ResRoFSeqBiLSTMAt-MT architecture
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Figure 23: ResRoFSeqConv-MT architecture

A.2 Additional Result Tables

Table 3: Summary of select model results on 1% V1 data
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Table 4: Summary of select model results on 1% V2 data

Table 5: Summary of ResRoFA-MT results with varying α on 1% V1 data
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