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1 Introduction
Everyday a vast amount of information is created; and in this dynamically changing world, it is
becoming increasingly difficult to pick out important information. To extract and understand in-
formation at a more digestible level, researchers have been applying clustering methods to various
types of domains. These methods work effectively when the target data is static or accumulates
slowly. But in fast-evolving domains such as news and online videos, clustering should be con-
ducted dynamically. In addition, data originating from those domains tend to have limited amount
of information, since there is less time for data accumulation. This introduces the need for the
clustering methods to be able to deal with short texts, which are inherently sparse.

To deal with the aforementioned issues, we refer to the work of Duan et. al (2018) in which they
combine the ideas of Dynamic Topic Models (DTMs), which cluster dynamically, and Dirichlet-
Multinomial Mixture Models (DMMs), which cluster short text, thus resulting in a model called
the Dynamic Dirichlet-Multinomial Mixture Model (DDMM). We derive and implement a col-
lapsed Gibbs sampler for posterior inference of the model, apply it to the Trending YouTube Video
Statistics dataset available on Kaggle, and subsequently conduct quantitative and qualitative anal-
yses of the resulting clusters. We find that a slight modification of the original DDMM algorithm
leads to a significant model improvement.

2 Background
2.1 Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
Presumably the most well-known algorithm for topic modeling, LDA assumes that each docu-
ment consists of a mixture of topics, where each topic has its own distribution of words. The
generative process and graphical representation for LDA are shown in Appendix A (Figure 1).
For posterior inference of the latent variables, sampling-based methods such as Gibbs sampling or
optimization-based methods such as variational inference are typically utilized. The assumption
of each document being a mixture of topics holds well in settings where there is abundant text
within each document; but in short text settings where there is insufficient text per document, the
assumption may not hold well.

2.2 Dynamic Topic Model (DTM) (Blei and Lafferty, 2006)
DTM is a topic model that was developed to analyze the dynamic evolution of topics in large
document collections. State space models are used on the parameter space of topic multinomials
and topic proportions, where the evolution of states over time reflect the dynamic nature of topics.
The generative process and graphical representation for DTM are shown in Appendix A (Figure
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2). Since DTM is composed of Latent Dirichlet Allocation (LDA) modules at each time step, it
may not perform well in short text settings.

2.3 Dirichlet-Multinomial Mixture Model (DMM) (Yin and Wang, 2014)
DMM is a probabilistic generative model for documents similar to LDA, except that the assumption
is that each document consists of only a single topic. The generative process and the graphical
representation for DMM are shown in Appendix A (Figure 3). Intuitively, as short texts tend to
consist of a single (or a very small number of) topics, DMM is known to perform well in such
settings. In addition, DMM is also known to be able to find the number of clusters automatically.

3 Dynamic Dirichlet-Multinomial Mixture Model (DDMM)
(Duan and Li, 2018)

A natural solution to dealing with limited and dynamic data is to combine the advantages of DTM
and DMM, which leads to the utilization of DDMM. Similar to DTM, DDMM assumes that topic
multinomials and cluster proportions evolve over time; and as an extension of DMM, DDMM
contains DMM modules within each time slice. The generative process could be described as
follows for each time t (where 1 ≤ t ≤ T = number of time steps):

1. Draw cluster proportion θt ∼ DirK(αt)

2. For each cluster k ∈ {1, 2, · · · , K}:

(a) Draw cluster component φt,k ∼ DirV (βt)

3. For each document d ∈ {1, 2, · · · , D(t)},

• Draw cluster assignment zd | θt ∼ Cat(θt).
• Draw words xdi | φt, zd ∼ Cat(φt,zd).

The graphical representation for DDMM is shown in Figure 4. A key point of DDMM is that
the hyperparameters to the exchangeable K and V -Dirichlet α and β are adjusted across time as
governed by the following equations:

α
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(t)
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(t), p(n
(t)
kv ) = n

(t)
kv/n

(t)
k , and λ and µ indicate the amount of influence

from the previous time step. Here, D denotes the number of documents, mk denotes the number
of documents belonging to cluster k, nkv denotes the number of occurrences of vocabulary v in
all documents belonging to cluster k, and nk denotes the number of all words in all documents
belonging to cluster k. The case where λ = µ = 0 can be viewed as having T DMMs trained sepa-
rately, one for documents in each time step. For posterior inference, we apply the collapsed Gibbs
sampler; more details of the derivation (including the full algorithm) are detailed in Appendix C.

We discover that the terms p(m
(t)
k ) and p(n

(t)
kv ) do not make sense as they result in a severe under-

estimation of the effect of cluster assignments at the previous time step. In order to mitigate this
potential problem, we modify Equations (1) and (2) to be the following: α(t+1)

k = α
(t)
k + λm

(t)
k and

β
(t+1)
kv = β

(t)
kv + µn

(t)
kv . For simplicity, we assume λ = µ = 1 throughout this paper.
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4 Experiment Setting
We apply our modified DDMM (abbreviated to MDDMM) to the Trending YouTube Video Statis-
tics dataset available on Kaggle. The US dataset consists of short texts of up to the top 200 trending
videos per day in the US across approximately 8 months. We focus on the fields title, tags, and
description, and create 7 datasets that consist of all 7 combinations of those fields (e.g. title dataset,
tags_description dataset, title_tags_description dataset). For the preprocessing of each dataset, we
remove YouTube specific and NLTK-defined stopwords, URLs, punctuation, and numbers, then
convert the words to lower case and lemmatize them. In addition, we filter out words that are not
within the top 2500 most frequent words. Ground truth labels of the clusters are given in the genre
field. We implement the collapsed Gibbs sampling algorithm for MDDMM using Python 3.6, and
conduct quantitative and qualitative analysis including other models such as LDA, DMM, DDMM,
and DTM. We use our own implementation for DMM, DDMM, and MDDMM, and the gensim
implementation for LDA and DTM.

5 Results and Discussion
5.1 Quantitative Analysis
To evaluate clusters quantitatively, we focus on Adjusted Mutual Information (AMI), a metric
largely used for imbalanced clusters. Simply put, it evaluates how accurate the data is clustered by
comparing them to ground truth clusters while considering the imbalance of the clusters, correcting
for the effect of agreement due to chance. The paper by Nguyen et al. (2010) provides a rigorous
treatment of AMI. Throughout this section, one time step corresponds to one month. Since each
of our datasets spans across 8 months, we would have 8 time steps. Also, unless stated otherwise,
we set K = 16 since the ground truth consists of 16 different clusters.

5.1.1 Comparing LDA and DMM Performance
In order to compare the performance of LDA and DMM in clustering short texts, we run each
algorithm 5 times on the title_tags_description dataset using default parameters (gensim’s default
parameters for LDA and α = β = 0.1 for DMM [as in Yin and Wang, 2014]) and compute the
AMI for each run. Each run of DMM consists of at most 5 epochs, with an early stopping criterion
when cluster assignments do not change for at least 97% of all documents (i.e. when clusters are
“stable"). Table 1 shows that DMM is a better model in terms of AMI, validating the hypothesis
that DMM performs better on short texts. Also, it takes about 4 epochs on average for DMM to
obtain stable clusters, demonstrating that DMM is fast to converge.

Model name Mean of AMI SD of AMI
LDA 0.191 0.011
DMM 0.218 0.014

Table 1: Summary of AMI scores for LDA and DMM

5.1.2 Comparing DTM, DDMM, and MDDMM Performance
In order to compare the performance of DTM, DDMM, and MDDMM in clustering short texts
dynamically, we run DDMM and MDDMM 5 times, and DTM 2 times (due to slow convergence)
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on the title_tags_description dataset using default parameters (α = 1.3 and β = 0.02 for DDMM
[as in Duan and Li, 2018] and gensim’s default parameters for DTM). Similar to the previous
experiment, we compute the AMI for each run, which consists of at most 5 epochs with the same
early stopping criterion. Table 2 shows that MDDMM achieves a much higher AMI than DDMM,
but a lower AMI than DTM. It is highly possible that carefully tuning the hyperparameters might
result in a significantly better performance of MDDMM considering the superior performance of
DMM in clustering short texts. However, it is worth mentioning that MDDMM is very fast to
converge, taking only 2-3 epochs per time step to obtain stable clusters and having an overall
running time of around 7 minutes per run (as compared to around 24 hours per run for DTM).

Model name Mean of AMI SD of AMI
DTM 0.268 0.023

DDMM 0.021 0.002
MDDMM 0.175 0.016

Table 2: Summary of AMI scores for DTM, DDMM and MDDMM

5.1.3 Studying the Convergence Rate of MDDMM on Different Datasets
In order to study the convergence rate of MDDMM on different datasets, we run the algorithm
for 5 epochs using default parameters α = 1.3 and β = 0.02, and no early stopping criterion on
3 datasets: title, title_tags and title_tags_description. For each time step, we measure the cluster
similarity between the last 2 epochs, which is defined as the proportion of documents having the
same cluster assignment in the last 2 epochs. From Figure 5, we observe that DDMM is generally
very fast to converge, as evidenced by the clusters produced in the last 2 epochs being mostly
similar for each dataset and time step. Also, we find that the similarities tend to increase as the
time step increases (especially for time step 3 to 7), which may be explained by the fact that larger
time steps correspond to more informative values of α and β. Lastly, we infer that richer datasets
(i.e. those with longer text fields, but still considered short text) tend to result in stable clusters
more quickly.

5.1.4 Studying MDDMM Performance with DifferentKKK Values on Different Datasets
In order to study the performance of MDDMM with different values of K (number of clusters) on
different datasets, we run the algorithm 5 times each on each of the 7 datasets withK ∈ {8, 16, 32}
using the same experiment settings as in Section 5.1.2. Figure 6 shows that the AMI scores typi-
cally increase as K increases. Also, the datasets tags_description and title_tags_description pro-
duce the highest AMI scores, while the dataset title produces the lowest AMI scores across different
values of K. In general, it seems that richer datasets tend to have higher AMI scores. Table 3 pro-
vides a more detailed summary of this result which includes the standard deviation of each AMI
value.
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K | Dataset Title Tags Description Title Tags
Title

Description
Tags

Description
Title Tags

Description

8
(0.025,
0.004)

(0.103,
0.017)

(0.110,
0.002)

(0.119,
0.018)

(0.104,
0.009)

(0.153,
0.013)

(0.128,
0.024)

16
(0.031,
0.002)

(0.126,
0.006)

(0.125,
0.011)

(0.113,
0.006)

(0.135,
0.013)

(0.170,
0.012)

(0.175,
0.016)

32
(0.042,
0.004)

(0.139,
0.013)

(0.134,
0.010)

(0.131,
0.002)

(0.130,
0.008)

(0.181,
0.007)

(0.177,
0.006)

Table 3: AMI scores with different K values on different datasets; format is (mean, sd)

5.2 Qualitative Analysis
To evaluate clusters qualitatively, we compare the topics produced by LDA and DMM on the entire
dataset, and compare the dynamic evolution of topics per month produced by DTM and MDDMM,
on the title_tags_description dataset with K = 16. We show the results of models with the highest
AMI in the previous experiments.

5.2.1 Comparing LDA and DMM Topics
The topics produced by LDA and DMM are very similar, as shown in the Appendix B Qualitative
Analysis section. We can argue that not only does the DMM produce a higher AMI, but it also
produces interpretable clusters similar to the widely used LDA.

5.2.2 Comparing DTM and MDDMM Dynamic Topics
We show examples of the dynamic evolution of 3 interpreted topics for both DTM and MDDMM
in Figures 7, 8, and 9. In general, it can be observed the MDDMM emphasizes words that are more
month-specific; in the Cooking topic, the word chocolate is emphasized in February when Valen-
tine’s day happens for MDDMM, whereas chocolate appears in many other months for DTM;
in the DIY topic, foil ball is spotted easier in April, and guava juice is spotted easier in June
for MDDMM; in the Seasonal topic, black friday and christmas are emphasized in their corre-
sponding months of November and December for MDDMM. The emphasis MDDMM makes on
month-specific words may be due to MDDMM having fewer parameters than DTM, which leads
to parameter updates with larger magnitude within each timestep. We can argue that despite the
inferiority in AMI for MDDMM, dynamic topics with more emphasis on each timestep topic can
be captured at a lower expense of time.

6 Future Work
Some possible area for future work include: (1) implementing DDMM using variational inference
and studying its performance; (2) experimenting with dataset variants for DTM; (3) experimenting
with other short text data sets; (4) examining the impact of different hyperparameter settings (e.g.
α, β) on model performance; and (5) analyzing model performance using other evaluation metrics
(e.g. homogeneity, completeness, adjusted rand index).
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Appendix A (Generative Processes and Graphical Models)

LDA

Let K denote the number of clusters (topics), V denote the vocabulary size, and D denote the
number of documents from here on. The generative process for LDA could be described as follows:

1. For each topic k ∈ [1, ..., K]

(a) Draw topic βk ∼ DirV (η)

2. For each document i:

(a) Draw topic proportions θi ∼ DirK(α)

(b) For each word j:

i. Draw topic assignment zij|θi ∼ Cat(θi)

ii. Draw word xij|{β, zij} ∼ Cat(βzij)

where η is a hyperparameter for an exchangeable V -Dirichlet, and α is a hyperparameter for an
exchangeable K-Dirichlet.

Figure 1: Graphical Representation of Latent Dirichlet Allocation

DTM

The generative process for DTM could be described as follows:

At time t:

(a) Draw topics βt|βt−1 ∼ NV (βt−1, σ
2I)
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Figure 2: Graphical Representation of Dynamic Topic Model

(b) Draw αt|αt−1 ∼ NK(αt−1, δ
2I)

(c) For each document d ∈ {1, 2, · · · , Dt}:
i. Draw ηt ∼ NK(αt, a

2I)

ii. For each word j:
A. Draw topic z ∼ Mult(π(ηt))

B. Draw word wt,d,j ∼ Mult(π(βt,z))

where σ, δ, a, are Gaussian variance hyperparameters, and π is a function that maps the Gaussian
samples to multinomial parameters. Also, note that the set of documents will differ at each time
step.

DMM

The generative process for DMM could be described as follows:

1. Draw cluster proportion θ ∼ DirK(α)

2. For each cluster k ∈ {1, 2, · · · , K}:

(a) Draw cluster component φk ∼ DirV (β)

3. For each document d ∈ {1, 2, · · · , D},

• Draw cluster assignment zd | θ ∼ Cat(θ).
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• Draw words xdi | φ, zd ∼ Cat(φzd).

where α is a hyperparameter for an exchangeable K-Dirichlet, and β is a hyperparameter for an
exchangeable V -Dirichlet.

Figure 3: Graphical Representation of Dirichlet Multinomial Mixture Model

DDMM

Figure 4: Graphical Representation of Dynamic Dirichlet Multinomial Mixture Model
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Appendix B (Experiment Results)

Quantitative Analysis

Figure 5: Cluster similarity per time step on different datasets

Figure 6: AMI scores with different K values on different datasets

Qualitative Analysis

LDA topics on title_tags_description dataset (K = 16)

Topic 0: production, buzzfeed, via, inc, warner, chappell, hole, dog, puppy, every

Topic 1: game, news, sport, fox, mendes, shawn, highlight, cup, world, league

Topic 2: cat, black, kid, simon, react, animation, box, brother, fine, panther
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Topic 3: night, nba, smith, google, first, wired, take, news, royal, espn

Topic 4: wedding, iphone, netflix, prince, new, diplo, apple, gaming, car, volcano

Topic 5: trailer, movie, film, war, new, star, disney, facebook, deadpool, dan

Topic 6: voice, live, season, episode, snl, american, america, audition, blind, nbc

Topic 7: food, recipe, challenge, test, link, chocolate, cooking, prison, taste, today

Topic 8: challenge, code, use, box, new, infinity, knife, james, cheap, store

Topic 9: room, diy, house, vlog, home, tour, jake, vlogs, day, life

Topic 10: world, wild, science, one, animal, clark, time, get, adventure, radio

Topic 11: show, late, funny, cbs, night, comedy, celebrity, episode, mon, corden

Topic 12: cake, live, jimmy, kimmel, alex, life, abc, bon, dress, brad

Topic 13: show, dude, talent, perfect, tonight, idol, family, jimmy, game, fallon

Topic 14: makeup, getty, beauty, tutorial, fashion, face, hair, product, cosmetic, foundation

Topic 15: know, record, got, love, song, new, need, get, let, high

DMM topics on title_tags_description dataset (K = 16)

Topic 0: iphone, netflix, new, movie, trailer, smith, apple, galaxy, series, alex

Topic 1: news, tmz, today, time, via, warner, production, inc, chappell, world

Topic 2: cat, cake, simon, new, charlie, game, film, puth, animation, super

Topic 3: news, new, nbc, pop, album, live, camila, facebook, award, record

Topic 4: voice, food, new, street, get, complex, nbc, season, team, sneaker

Topic 5: get, new, know, time, make, science, one, day, people, facebook

Topic 6: trailer, movie, war, star, film, new, black, disney, marvel, facebook

Topic 7: new, link, mythical, record, rhett, song, love, live, gmm, performing

Topic 8: nba, sport, highlight, first, espn, game, wwe, fox, world, take

Topic 9: food, make, recipe, dog, bon, chocolate, challenge, cooking, random, river

Topic 10: dude, perfect, christmas, doctor, new, gane, shot, ever, every, stocking
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Topic 11: late, show, night, cbs, funny, nfl, celebrity, seth, snl, comedy

Topic 12: makeup, beauty, code, tutorial, link, produce, use, make, cosmetic, new

Topic 13: react, show, jimmy, tonight, box, fort, fallon, kid, fine, challenge

Topic 14: life, noggin, nail, diy, hair, get, makeover, getty, bbc, new

Topic 15: jimmy, kimmel, live, ellen, idol, show, facebook, american, celebrity, kevin

Topic Evolution Examples on title_tags_description dataset (K = 16)

Figure 7: Cooking Topic Evolution
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Figure 8: DIY Topic Evolution

Figure 9: Seasonal Topic evolution
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Interpreted General Topics per Cluster for DTM and MDDMM

Figure 10: Interpreted General Topics for DTM and MDDMM
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Appendix C (Collapsed Gibbs Sampler)

DMM

In order to derive a collapse Gibbs sampler algorithm for DMM, it is necessary to compute p(zd =
k | z−d, x), where z−d denotes the cluster labels of all documents except d. Note that we have

p(zd = k | z−d, x) =
p(x, z | α, β)

p(x, z−d | α, β)
∝ p(x, z | α, β)

p(x−d, z−d | α, β)
, (3)

where x−d denotes all words in all documents except d. The next step is to derive p(x, z | α, β),
whence p(x−d, z−d | α, β) (and the complete conditional) can be inferred very easily. Observe that
p(x, z | α, β) = p(z | α)p(x | z, β).

We can write p(z | α) =
∫

p(z | θ)p(θ | α)dθ. Owing to the fact that p(z | θ) follows a categorical
distribution, we have

p(z | θ) =
D∏
d=1

p(zd | θ) =
D∏
d=1

K∏
k=1

θ
z
(k)
d
k =

K∏
k=1

θ
∑D

d=1 z
(k)
d

k =
K∏
k=1

θmk
k , (4)

where mk denotes the number of documents belonging to cluster k. Also, the fact that p(θ | α)
follows a Dirichlet distribution implies that

p(θ | α) =
Γ(Kα)

Γ(α)K

K∏
k=1

θα−1
k . (5)

Therefore, we have

p(z | α) =

∫
p(z | θ)p(θ | α)dθ =

Γ(Kα)

Γ(α)K

∫ K∏
k=1

θα+mk−1
k dθ (6)

=
Γ(Kα)

Γ(α)K

∏K
k=1 Γ(α +mk)

Γ(Kα +D)
(7)

using the fact that
∑K

k=1 mk = D and the p.d.f. of a Dirichlet distribution integrates to 1. Similarly,
we have p(x | z, β) =

∫
p(x | z, φ)p(φ | β)dφ. Observe that

p(x | z, φ) =
K∏
k=1

V∏
v=1

φnkv
kv , (8)

where nkv denote the number of occurrences of vocabulary v in all documents belonging to cluster
k. Also,

p(φ | β) =
K∏
k=1

(
Γ(V β)

Γ(β)V

V∏
v=1

φβ−1
kv

)
. (9)
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Using the same technique as above, we easily obtain

p(x | z, β) =
K∏
k=1

(
Γ(V β)

Γ(β)V

∏V
v=1 Γ(β + nkv)

Γ(V β + nk)

)
, (10)

where nk =
∑V

v=1 nkv denotes the number of words in all documents belonging to cluster k. From
here, we have

p(x, z | α, β) =
Γ(Kα)

Γ(α)K

∏K
k=1 Γ(α +mk)

Γ(Kα +D)

K∏
k=1

(
Γ(V β)

Γ(β)V

∏V
v=1 Γ(β + nkv)

Γ(V β + nk)

)
. (11)

Similarly,

p(x−d, z−d | α, β) =
Γ(Kα)

Γ(α)K

∏K
k=1 Γ(α +mk,−d)

Γ(Kα +D − 1)

K∏
k=1

(
Γ(V β)

Γ(β)V

∏V
v=1 Γ(β + nkv,−d)

Γ(V β + nk,−d)

)
. (12)

It is easy to see that if document d currently belongs to cluster k, we havemk,−d = mk−1, nk,−d =
nk −Nd (where Nd denotes the number of words in document d), and nkv,−d = nkv −Ndv (where
Ndv denotes the number of occurrences of vocabulary v in document d). Otherwise, we have
mk,−d = mk, nk,−d = nk and nkv,−d = nkv. Combined with the fact that Γ(x+m)

Γ(x)
=
∏m

i=1(x+ i−1)
for any positive integer m, we obtain

p(zd = k | z−d, x) ∝ p(x, z | α, β)

p(x−d, z−d | α, β)
(13)

∝
(

α +mk,−d

Kα +D − 1

) ∏V
v=1

∏Ndv

j=1 (β + nkv,−d + j − 1)∏Nd

i=1 (V β + nk,−d + i− 1)
. (14)

From here, the collapsed Gibbs sampler algorithm can be written as follows:

1. Sample a cluster for each document. Compute initial values of mk, nk and nkv for each
cluster k and vocabulary v.

2. While the Markov chain has not converged, do the following for each document d:

• “Knock out” document d from its current cluster (let it be z). Modify mz, nz and nzv
for each vocabulary v accordingly.

• Sample a cluster for document d according to Equation 15 (let it be q). Modify mq, nq
and nqv for each vocabulary v accordingly.

DDMM

The dynamic DMM proposed by Duan and Li (2018) is largely similar to the DMM described
above, except that the hyperparameters α and β vary across time as governed by the following
equations:

α
(t+1)
k = α

(t)
k + λp(m

(t)
k ); (15)
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β
(t+1)
kv = β

(t)
kv + µp(n

(t)
kv ), (16)

where p(m
(t)
k ) = m

(t)
k /D

(t) and p(n
(t)
kv ) = n

(t)
kv/n

(t)
k . Here, λ and µ indicate the amount of influence

from the previous time step. The case where λ = µ = 0 can be viewed as having T DMMs
trained separately, one for documents in each time step. At the initial time step, α(1) and β(1)

k are
assumed to be parameters to exchangeable K and V -Dirichlet, respectively. At later time steps,
this exchangeability assumption may not hold. Hence, the update rule on Equation 15 becomes

p(zd = k | z−d, x) ∝

 αk +mk,−d(∑K
k=1 αk

)
+D − 1

 ∏V
v=1

∏Ndv

j=1 (βkv + nkv,−d + j − 1)∏Nd

i=1

((∑V
v=1 βkv

)
+ nk,−d + i− 1

) . (17)

The same Gibbs sampler algorithm is used to infer the topic distribution at time t based on that at
time t− 1, for each 1 ≤ t ≤ T (except for t = 1, α and β need to be initialized).
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