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Abstract

Transformers have exhibited impressive in-context learning (ICL) capabilities: they
can generate predictions for new query inputs based on sequences of inputs and
outputs (i.e., prompts) without parameter updates. Efforts to provide theoretical
explanations for the emergence of these abilities have primarily focused on the
structured data setting, where input-output pairings in the training data are known.
This scenario can enable simplified transformers (e.g., ones comprising a single
attention layer without the softmax activation) to achieve notable ICL performance.
However, transformers are primarily trained on unstructured data that rarely include
such input-output pairings. To better understand how ICL emerges, we propose
to study transformers that are trained on unstructured data, namely data that lack
prior knowledge of input-output pairings. This new setting elucidates the pivotal
role of softmax attention in the robust ICL abilities of transformers, particularly
those with a single attention layer. We posit that the significance of the softmax
activation partially stems from the equivalence of softmax-based attention models
with mixtures of experts, facilitating the implicit inference of input-output pairings
in the test prompts. Additionally, a probing analysis reveals where these pairings
are learned within the model. While subsequent layers predictably encode more
information about these pairings, we find that even the first attention layer contains
a significant amount of pairing information.

1 Introduction

Transformers, like other attention-based architectures, have shown remarkable in-context learning
(ICL) abilities [Brown et al., 2020]. For instance, given the prompt “FJD: Fiji; CAD: Canada;
JPY: Japan; KRW: ?", a well-trained transformer should produce South Korea as a response.
As a step towards theoretically understanding how and why transformers excel at ICL, Garg
et al. [2022] viewed ICL as learning a specific function class F from training data of the form
(x1, f(x1), . . . , xn, f(xn), xn+1), where f ∈ F , and their corresponding responses f(xn+1). Ex-
tending this ICL formulation, subsequent studies have delved into the ICL capabilities of transformers;
see Appendix A for a summary of recent works on ICL. These works often assume prior knowl-
edge of input-output pairings in the training data, either through (trained) positional encodings or
concatenated tokens comprising both xi and f(xi) for each i ∈ {1, 2, . . . , n}.

In practice, however, transformers are most often trained on unstructured natural language data.
Instead of structured prompts like “FJD: Fiji; CAD: Canada, ...", transformers’ training data might
involve sentences like “In Canada, octane-95 gasoline costs CAD 7.00 (USD 5.20) per gallon,
while the same quantity is priced at FJD 10.86 (USD 4.72) in Fiji..." Apart from being impractical,
structured training data can facilitate remarkable ICL performance even in simplified transformers,
including single-layer transformers with linear or ReLU (instead of softmax) activation [e.g., Zhang
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Figure 1: In-context learning (ICL) with structured (left) versus unstructured (right) training data
on a test prompt with the same inputs and outputs. In the former, known (xi, f(xi)) pairings are
exploited to predict w⊤x4 given x4. In contrast, such pairings are inferred in the latter. We argue that
unstructured training data are more ideal for studying ICL as they better mirror how transformers
are trained on natural language data. In this case, the softmax activation enables tokens to act as
a mixture of experts. This allows for automatic inference of input-output pairs in the test prompt,
especially with a single attention layer.

et al., 2023a, Von Oswald et al., 2023, Bai et al., 2023]. Moreover, they can lead to over-simplified
analyses of ICL where the attention mechanism is not fully utilized, as we demonstrate in Section 2.

How does ICL emerge from training on unstructured data then? In this work, we introduce a novel ICL
training setup that does not assume prior knowledge of input-output pairings, mimicking transformer’s
unstructured training data (see illustration in Figure 1). Our training prompts largely follow Garg
et al.’s [2022] formulation, i.e., (x1, f(x1), . . . , xn, f(xn), xn+1), with positional encodings removed
from the architecture. Given that transformers are inherently position-invariant [Vaswani et al., 2017],
the absence of positional encodings implies that the model lacks access to any positional information.

Our empirical findings in this new setting elucidate the critical role of the softmax activation in the
robust ICL abilities of transformers, especially those with a single attention layer. We argue that the
significance of the softmax activation can be partially explained via the equivalence of softmax-based
attention models with mixtures of experts [Jacobs et al., 1991], where each token position serves as
an expert. Furthermore, we demonstrate through a probing analysis that intermediate representations
from the softmax activation layers implicitly learn input-output pairings in the test prompts. While it
is expected that subsequent layers contain more information about these pairings, we demonstrate
that even the first attention layer encapsulates a significant amount of pairing information.

2 In-context learning with structured training data

The predominant focus of investigations into in-context learning (ICL) has been on the structured
data scenario, where training prompts contain information regarding input-output pairings. Two
prevalent approaches include combining xi and f(xi) into a single token [e.g., Zhang et al., 2023a]
or employing distinct tokens for xi and f(xi) alongside positional encodings [e.g., Garg et al., 2022].
This section focuses on the former approach. In Section 2.1 and 2.2, we present theoretical and
empirical evidence that ICL in this case still works well even with a single attention layer or the
removal of the softmax activation. In Section 2.3, we argue that this particular form of ICL may not
only be impractical but also fail to fully capture the essence of the attention mechanism.

2.1 With structured training data, ICL works well even without the softmax activation

We consider prompts of the form P =
(
x1, w

⊤x1, . . . , xn, w
⊤xn, xn+1

)
and the corresponding

responses w⊤xn+1, where x′
is and w are independently sampled from the k-variate standard Gaussian

distribution. To simulate structured training data, we convert P into the following matrix:

S = S(P ) =

[
x1 x2 · · · xn xn+1

w⊤x1 w⊤x2 · · · w⊤xn 0

]
∈ R(k+1)×(n+1).

Drawing inspiration from Garg et al. [2022], we first project each column of S into a d-dimensional
vector via a trainable linear transformation. This operation is then followed by ℓ consecutive softmax
or linear attention layers (without positional encodings), with each attention layer containing h heads.
Finally, a trainable linear transformation is applied to the last column, resulting in a scalar intended
to estimate w⊤xn+1.
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n d ℓ Softmax attn. Linear attn.

10

8
1 0.3027 0.2522
3 0.0017 0.0005

32
1 0.2841 0.2510
3 0.0007 0.0002

20

8
1 0.1722 0.1454
3 0.0004 0.0002

32
1 0.1449 0.1405
3 0.0002 0.0001

30

8
1 0.1212 0.0611
3 0.0001 0.0001

32
1 0.0750 0.0982
3 0.0001 0.0000

Table 1: With structured training data, trained
transformers using both softmax and linear acti-
vations perform ICL well across various param-
eter combinations (n: number of input-output
pairs within each prompt; d: dimensionality of
the projected tokens; ℓ: number of attention lay-
ers). Here, each number represents the average
mean squared error (MSE) between predicted
and actual responses over the last 5,000 steps.

n d ℓ Softmax attn. Linear attn.

10

8
1 1.2521 1.8668
3 1.0022 0.8325

32
1 1.2293 1.8631
3 0.6996 0.6843

20

8
1 1.2726 1.8648
3 0.9678 1.0307

32
1 1.2308 1.8635
3 0.7372 0.6743

30

8
1 1.3079 1.8577
3 1.0039 1.0174

32
1 1.2424 1.8538
3 0.6116 0.6751

Table 2: ICL with unstructured training data
is more challenging across various parameter
combinations (n: number of input-output pairs
within each prompt; d: dimensionality of the
projected tokens; ℓ: number of attention layers),
and requires the softmax activation to perform
reasonably well when ℓ = 1. Here, each number
represents the average MSE between predicted
and actual responses over the last 5,000 steps.

The model is trained by minimizing the mean squared error loss over 300,000 steps using the Adam
optimizer [Kingma and Ba, 2015] with a learning rate of 10−3. We set k = 2, h = 4, ℓ ∈ {1, 3},
n ∈ {10, 20, 30}, and d ∈ {8, 32}. To avoid overfitting, we generate a new prompt-response batch of
size 256 at each step following Garg et al. [2022]. The result is in Table 1: the trained transformers
demonstrate effective ICL performance even without the softmax activation in the attention layers.

2.2 In some architectures, ICL performance is notable with a single linear attention layer

To illustrate ICL performance with a single linear attention layer, we consider the architecture in
Zhang et al. [2023a]: given any prompt S, it outputs the bottom-right entry of f(S) = S+ 1

nW
PV S ·

S⊤WKQS (denoted by fBR(S)). Here, WPV ,WKQ ∈ R(k+1)×(k+1) are trainable parameters. We
follow the same training procedure as in Section 2.1. Table 3 in Appendix C shows that the trained
transformers exhibit excellent ICL abilities even when WPV and WKQ are set to identity. This result
is not surprising due to the following lemma, whose proof is provided in Appendix B.

Lemma 1. Let Λ ∈ Rk×k be a positive definite matrix with eigenvalues λ1, λ2, . . . , λk > 0. Consider
a prompt S where x′

is are independently generated from Nk(0,Λ) and w is generated from Nk(0, I).
Let fBR(S) denote the prediction for w⊤xn+1 when WPV = WKQ = I . We have

corr
(
w⊤xn+1, fBR(S)

)
→

∑k
i=1 λ

2
i√∑k

i=1 λi

√∑k
i=1 λ

3
i

as n → ∞. When k = 2, the limiting correlation is lower bounded by 2
√
2/3.

Lemma 1 suggests that even if the weight matrices are set to identity (i.e., no parameters are learned),
there is a significant correlation between the predicted and actual responses assuming a sufficiently
large number of input-output pairs. Specifically, when k = 2, the correlation converges to a near
perfect value of around 0.95.

2.3 ICL with structured training data may under-utilize core attention mechanism features

A common theme in the theoretical arguments for ICL is the notion that transformers are capable of
implementing gradient descent [e.g., Von Oswald et al., 2023, Akyürek et al., 2022, Dai et al., 2023,
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Figure 2: The importance of the softmax attention layer in facilitating ICL with structured training
data when ℓ = 1 is evident from the observed training dynamics when utilizing softmax and linear
attention layers. Here, each line represents one combination of parameters.

Bai et al., 2023]. This is typically demonstrated through the construction of a transformer specifically
designed to perform this function. It turns out that in this structured training data setting, the essence
of the attention mechanism may not be fully leveraged. For example, consider a simplified version of
Bai et al.’s [2023] construction. Specifically, they analyzed prompts of the form

H =

[
x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
p1 p2 · · · pn pn+1

]
∈ RK×(n+1),

where pi = [0, 1,1(i ≤ n)]
⊤ ∈ RK−k−1 for some K = Θ(k). Their objective is to minimize the

mean squared error loss as given by L(w) = 1
2n

∑n
i=1(w

⊤xi − yi)
2. A step of gradient descent with

step size η thus transforms w into w̃ = w − η
n

∑n
i=1 xi(w

⊤xi − yi). Bai et al. [2023] showed that it
is possible to construct a one-layer, two-head transformer with the ReLU activation that transforms
each column of H of the form hi = [xi, y

′
i, w,0, 1, ti]

⊤, where y′i = yi1(i ≤ n) and ti = 1(i ≤ n),
into h̃i = [xi, y

′
i, w̃,0, 1, ti]

⊤. This transformation mimics a gradient descent step.

Despite this connection, their attention mechanism does not involve comparisons across different
tokens to determine their relative importance. In particular, in their construction, hi is related to h̃i

via the equation

h̃i = hi +
1

n+ 1

2∑
m=1

n+1∑
j=1

σ(⟨Qmhi,Kmhj⟩)Vmhj

for particular choices of Qm, Km and Vm (m ∈ {1, 2}), where σ(·) denotes the ReLU activation.
These choices yield the attention weights σ(⟨Q1hi,K1hj⟩) = 1

2σ(w
⊤xj − yj)1(j ≤ n) and

σ(⟨Q2hi,K2hj⟩) = 1
2σ(−w⊤xj + yj)1(j ≤ n), which are independent of hz for any z ̸= j. As a

remedy, we introduce a new ICL training setting that does not assume known input-output pairings in
Section 3. In this setting, the softmax attention proves essential for ensuring robust ICL performance,
especially in the case of a single attention layer.

3 In-context learning with unstructured training data

In Section 2, we showed that in-context learning (ICL) with structured training data may not only be
impractical but also fall short in capturing the fundamental aspects of the attention mechanism. We
now introduce a novel ICL training setup that does not assume known input-output pairings in each
training prompt. Specifically, each training prompt P =

(
x1, w

⊤x1, . . . , xn, w
⊤xn, xn+1

)
is now

transformed into

T = T (P ) =

[
x1 0 · · · xn 0 xn+1

0 w⊤x1 · · · 0 w⊤xn 0

]
∈ R(k+1)×(2n+1).
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We adopt the transformer architecture and training specifics outlined in Section 2.1. Table 2 and
Figure 2 highlight the challenging nature of this new scheme and the crucial role of the softmax
activation, especially with a single attention layer. In Section 3.1, we offer a potential explanation for
the importance of the softmax activation, drawing insights from mixtures of experts [Jacobs et al.,
1991]. In Section 3.2, we present a probing result that offers empirical evidence that transformers
can infer input-output pairings in the test prompts. This finding sheds light on how transformers can
excel in ICL despite being trained on unstructured text data.

3.1 Softmax attention layers serve as mixtures of experts

To illustrate our argument, we consider two test prompts with k = 1 and n = 3: [1, 10, 4, 40, 3, 30, 6]
(target response: 6× 10 = 60) and [1, 4, 10, 40, 3, 12, 5] (target response: 5× 4 = 20). With a single
attention layer, we expect that token 1 pay more attention to 10 (4) as compared to 4 (10) in the first
(second) prompt. As discussed in Section 2.3, it is impossible to achieve this behavior using linear
attention where the attention weight from one token to another can only depend on these two tokens
alone. However, Proposition 2 highlights how softmax attention overcomes this limitation by acting
as a mixture of experts, with each token position being an expert. The details and proof are deferred
to Appendix D.
Proposition 2. For any prompt T , a one-layer, h-head, softmax transformer with no bias terms
following the structure in Section 2.1 outputs a stacked mixture-of-experts prediction ŷ = ŷ(T ) =∑h

i=1

(∑2n+1
j=1 πi

j(T )β
i
j(T )

)
(see Appendix D for detailed definitions of πi

j(T ) and βi
j(T )).

With multiple attention layers, ICL performance is not compromised when using non-softmax
activation, as shown in Table 2. We hypothesize that multiple attention layers could potentially
function as mixtures of experts, and leave the detailed analysis for future work.

3.2 ICL with unstructured training data learns input-output pairings in the test prompts

We finally perform a probing analysis to study whether ICL with unstructured training data indeed
learns input-output pairings in the test prompts. Specifically, we fix the weights of a four-head,
six-layer transformer with n = 20 and d = 32 that has been trained for 1.6 million steps following
the procedure detailed in Section 2.1. For each 0 ≤ i ≤ 6, denote the intermediate representation of
x1 in the i-th attention layer by ri(x1) ∈ Rd (here, i = 0 refers to the representation right before the
first attention layer). Subsequently, a neural network is trained to predict w⊤x1 given ri(x1) on a
newly created training set of size 10, 000. Evaluating corr(ri(x1), y1) for each i on a test set of the
same size yields correlations of 0.004, 0.631, 0.639, 0.663, 0.747, 0.811, and 0.780, respectively. In
contrast, if we replicate the same experiment except that we predict w⊤x2 given ri(x1), we observe
correlations of at most 0.2 that do not increase with i. These results indicate that transformers can
infer input-output pairings in the test prompts, even as early as in the first hidden layer. Moreover,
increasingly robust pairing information is encoded as we go deeper into the network.

4 Discussion

This paper explores the role of structured and unstructured training data in the in-context learning
(ICL) capabilities of transformers. We show that structured training data, i.e., those with known
input-output pairings, yield robust ICL performance even without essential attention features like the
softmax activation. To better understand the role of unstructured training data in ICL, we introduce a
novel ICL training setup, revealing the crucial role of the softmax attention layer particularly within
a single-layer transformer. We posit that this phenomenon occurs partly due to the resemblance
between softmax-based attention models and mixtures of experts, allowing for informed inferences
about input-output pairings in the test prompts. A probing analysis shows that transformers start
learning these pairings as early as in the first attention layer. Formal theoretical arguments explaining
the emergence of transformers’ ICL abilities from unstructured training data are interesting avenues
for future work.

Acknowledgements. This work is supported in part by the Office of Naval Research under grant
number N00014-23-1-2590 and the National Science Foundation under grant number 2231174 and
number 2310831.
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Supplementary Material

A Related work on in-context learning

Since the discovery that transformers demonstrate exceptional performance at in-context learning
(ICL) [Brown et al., 2020], numerous studies have been devoted to understanding this intrigu-
ing phenomenon from diverse theoretical and empirical perspectives. Many of them adopt Garg
et al.’s 2022 formulation of ICL as learning a specific function class F from prompts of the form
(x1, f(x1), . . . , xn, f(xn), xn+1), where f ∈ F , and their corresponding responses f(xn+1). Here,
ICL refers to the transformer’s ability to produce a response close to g(yn+1) when supplied with a
prompt (y1, g(y1), . . . , yn, g(xn), yn+1) for any g ∈ F .

In pursuit of a deeper understanding of ICL, some studies take a Bayesian perspective. Xie et al.
[2021] conceptualized ICL as implicit Bayesian inference, wherein language models infer a latent
document-level concept to generate coherent next tokens in the pre-training phase and a shared latent
concept among examples in a prompt during testing. Wang et al. [2023] argued that large language
models operate as latent variable models with latent variables encompassing task-related information
being implicitly derived, thereby playing a crucial role in their remarkable ICL performance. Ahuja
et al. [2023] provided empirical evidence of transformers displaying characteristics akin to the
Bayesian predictor when tackling ICL across linear and non-linear function classes. Zhang et al.
[2023b] demonstrated that without updating the neural network parameters, ICL is equivalent to
Bayesian model averaging parameterized by the attention mechanism.

Other studies argue that transformers can learn in-context by gradient descent. Akyürek et al.
[2022], Von Oswald et al. [2023], and Dai et al. [2023] showed that transformers can implement
gradient descent, providing a mechanistic framework for comprehending ICL on regression problems.
Bai et al. [2023] employed an efficient implementation of in-context gradient descent to establish
generalization bounds and argued that transformers can perform algorithm selection in a manner
analogous to statisticians. Zhang et al. [2023a] established that the gradient flow dynamics of
transformers converge to a global minimum capable of performing ICL. Ahn et al. [2023] scrutinized
the optimization landscape of transfomers, revealing that the optimal parameters align with an
iteration of preconditioned gradient descent. Huang et al. [2023] studied the learning dynamics of
single-layer transformers with softmax attention trained via gradient descent to perform ICL on linear
functions. Li et al. [2023a] investigated ICL using a softmax regression formulation and demonstrated
that the models learned through gradient descent exhibit a high degree of similarity to transformers.

In a related exploration, Mahankali et al. [2023] proved that in single-layer linear transformers,
minimizing the pretraining loss is analogous to performing a step of gradient descent when the
covariates are sampled from the standard Gaussian distribution. Ren and Liu [2023] established a link
between ICL with softmax attention and contrastive learning, interpreting the inference process of ICL
as a form of gradient descent within a contrastive learning framework. However, some studies present
evidence suggesting that transformers may not exclusively rely on gradient descent in performing ICL.
Fu et al. [2023] revealed that for linear regression, ICL is acquired through higher-order optimization
techniques such as iterative Newton’s method rather than gradient descent. While numerous studies
have developed transformers capable of emulating gradient descent, Shen et al. [2023] argued that
the direct equivalence between gradient descent and ICL might not necessarily apply in real-world
scenarios.

The pretraining aspects, e.g., data quantity and distribution, task diversity, and algorithm, are also
common themes in numerous works on ICL. Min et al. [2022] discovered that the precise input-label
mapping in the demonstrations used for ICL does not affect performance, whereas factors such as
independent specification of the input and label spaces have a more substantial influence. Chan et al.
[2022] revealed that the impressive ICL capabilities observed in transformers are influenced by both
the characteristics of the training data distributions and the inherent architectural features of the
models. Kossen et al. [2023] examined the influence of the conditional label distribution in in-context
examples on ICL predictions, revealing that ICL takes into account in-context label information and
can even acquire the capability to learn entirely new tasks in-context.

In a similar spirit, Wu et al. [2023] demonstrated that pretraining single-layer linear attention models
for performing ICL on linear regression with a Gaussian prior can be achieved effectively with a
minimal number of independent tasks, regardless of the task dimension. Raventós et al. [2023]
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highlighted the presence of a task diversity threshold that differentiates between the regimes in
which transformers can or cannot successfully tackle previously unseen tasks. Yadlowsky et al.
[2023] argued the impressive ICL capabilities of transformers could be attributed to the range and
diversity of the data mixtures in their pretraining rather than relying solely on their inductive biases
for generalizing to new tasks. Ding et al. [2023] compared transformers’ ICL performance when
trained with prefixLM (allowing in-context samples to attend to all tokens) and causalLM (preventing
in-context samples from attending to subsequent tokens), and concluded that the latter led to inferior
ICL performance.

Other studies look into ICL from a learning theory perspective. Wies et al. [2023] presented the
first PAC-type framework for ICL and provided finite-sample complexity results. Hahn and Goyal
[2023] derived an information-theoretic bound showing how ICL emerges from the general task of
predicting the next token. Several other investigations approach ICL with an emphasis on mechanistic
interpretability. Olsson et al. [2022] attributed ICL in large transformers to the development of
attention heads with the ability to complete token sequences such as [A][B] · · · [A] → [B], which
they referred to as "induction heads." Bietti et al. [2023] analyzed a setup where tokens are generated
from either global or context-specific bigram distributions to differentiate global from in-context
learning, showing that the former occurs rapidly and the latter is achieved gradually through the
development of an induction head.

Finally, several works delve into other aspects of ICL. Li et al. [2023b] viewed ICL as an algo-
rithm learning problem in which a transformer model implicitly constructs a hypothesis function at
inference-time, and presented generalization bounds through the perspective of multi-task learning.
Han et al. [2023] contended that transformers’ capacity to execute ICL following training on a general
language corpus can be attributed to their ability to simulate kernel regression. Guo et al. [2023]
examined ICL within a more realistic framework where the label is influenced by the input through a
potentially complex yet constant representation function, combined with a distinct linear function
for each instance. Lu et al. [2023] asserted that emergent abilities in transformers can be primarily
attributed to ICL.
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B Proof of Lemma 1

Proof. A straightforward calculation yields fBR(S) = w⊤Lnxn+1, where Ln = 1
n

∑n
i=1 xix

⊤
i . Let

X = (x1, x2, . . . , xn). Observe that

cov
(
w⊤xn+1, fBR(S)

)
= cov

(
w⊤xn+1, w

⊤Lnxn+1

)
= E

(
cov

(
w⊤xn+1, w

⊤Lnxn+1 | X,w
))

= E
(
w⊤ΛLnw

)
= E

(
E
(
w⊤ΛLnw | X

))
= E (tr (ΛLn))

= tr (ΛE (Ln))

= tr
(
Λ2
)
,

where we used the law of total covariance, the law of total expectation, and the linearity of tr(·).
Similarly, we have var(w⊤xn+1) = E(w⊤Λw) = tr(Λ) and

var (fBR(S)) = var
(
w⊤Lnxn+1

)
= E

(
var
(
w⊤Lnxn+1 | X,w

))
= E

(
w⊤LnΛLnw

)
= E

(
E
(
w⊤LnΛLnw | X

))
= E (tr (LnΛLn))

= E
(
tr
(
ΛL2

n

))
= tr

(
ΛE
(
L2
n

))
→ tr

(
Λ3
)
,

since

E
(
L2
n

)
= var (Ln) + (E (Ln))

2

=
1

n2
var (Wk(Λ, n)) + Λ2

→ Λ2

as n → ∞ by Proposition 8.3 of Eaton [1983]. Here, W refers to the Wishart distribution.

The first result then follows from the well-known fact that the trace of a matrix is the same as the sum
of its eigenvalues. The second result follows from the inequality 9(a2 + b2)2 ≥ 8(a+ b)(a3 + b3)
for every a, b > 0, which is equivalent to (a2 − 4ab+ b2)2 ≥ 0. Equality is attained if and only if
b = (2−

√
3)a or b = (2 +

√
3)a.
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C ICL performance under the architecture described in Section 2.2

Λ n Trainable Fixed[
1 0

0 1

]
10 0.8800 0.8801

30 0.9538 0.9540[
1 1

2
1
2 1

]
10 0.8783 0.8486

30 0.9544 0.9034[
1 − 1

2

− 1
2 1

]
10 0.8675 0.8304

30 0.9528 0.9090

Table 3: In the architecture described in Section 2.2, trained transformers successfully perform ICL
across various parameter combinations (n: number of input-output pairs within each prompt; Λ:
covariance matrix of the Gaussian distribution that generates xi’s), even when the weights WPV

and WKQ are set to identity (Fixed). Here, each number represents the Pearson correlation between
predicted and actual responses on a test set of size 5,000.
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D Details and proof of Proposition 2

We begin by examining how a transformer adhering to the structure outlined in Section 2.1 with ℓ = 1
generates a predicted response for a given prompt of the form

T = T (P ) =

[
x1 0 · · · xn 0 xn+1

0 w⊤x1 · · · 0 w⊤xn 0

]
∈ R(k+1)×(2n+1).

The following steps provide a comprehensive overview of this process, with bias matrices removed to
enhance clarity in explanation.

1. Linear projection of input. We first project each token into a d-dimensional vector. In
matrix form, this can be written as T proj = CT ∈ Rd×(2n+1), where C ∈ Rd×(k+1).

2. Attention mechanism for each head. For each attention head i ∈ {1, 2, . . . , h}, we
introduce query, key and value mappings Qi,Ki, Vi ∈ Rd′×d and compute

T attn
i = ViT

projsoftmax
((

QiT
proj
)⊤ (

KiT
proj
))

∈ Rd′×(2n+1),

where the softmax is applied column-wise.
3. Concatenation of heads. We then concatenate the outputs from all h heads and apply a

linear transformation to restore the dimensionality to d× (2n+ 1). In matrix form, this can
be written as

T ′ =

h∑
i=1

OiT
attn
i ∈ Rd×(2n+1),

where Oi ∈ Rd×d′
for each i ∈ {1, 2, . . . , h}.

4. Residual connection. We apply a residual connection, yielding

T ′′ = T proj + T ′ ∈ Rd×(2n+1).

5. Linear projection of last column. A linear transformation is applied to the last column,
resulting in the predicted response

ŷ = α⊤T ′′e2n+1 ∈ R.

Here, α ∈ Rd and ej ∈ {0, 1}2n+1 denotes a zero vector with 1 on the j-th entry.

We now state the proof of Proposition 2.

Proof. For each i ∈ {1, 2, . . . , h}, let OiVi = OVi ∈ Rd×d and Q⊤
i Ki = QKi ∈ Rd×d. Observe

that

ŷ = α⊤

(
CT +

h∑
i=1

(OVi)CT softmax
(
T⊤C⊤ (QKi)CT

))
e2n+1

=

h∑
i=1

2n+1∑
j=1

(
exp

(
e⊤j T

⊤C⊤(QKi)CTe2n+1

)∑2n+1
j=1 exp

(
e⊤j T

⊤C⊤(QKi)CTe2n+1

))(α⊤(OVi)CTej +
1

h

(
α⊤CTe2n+1

))

=

h∑
i=1

2n+1∑
j=1

πi
j(T )β

i
j(T )

 ,

where
βi
j(T ) = α⊤(OVi)CTej +

1

h

(
α⊤CTe2n+1

)
and

πi
j(T ) =

exp
(
e⊤j T

⊤C⊤(QKi)CTe2n+1

)∑2n+1
j=1 exp

(
e⊤j T

⊤C⊤(QKi)CTe2n+1

) ,
completing the proof.
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Note that the resulting predictor can be interpreted as a stacked mixture of experts [Jacobs et al.,
1991]. Indeed, for each head i ∈ {1, 2, . . . , h} and token j ∈ {1, 2, . . . , 2n+ 1}, βi

j(T ) represents
the prediction of the j-th expert in the i-th head and πi

j(T ) represents its corresponding expert weight.

It is important to emphasize that for a fixed head i, πi
j(T ) depends on all columns of T , as indicated

by the presence of the terms e⊤j T
⊤ for all j ∈ {1, 2, . . . , 2n+ 1}. This dependence is facilitated by

the softmax attention, enabling it to achieve the desired behavior illustrated through the example in
Section 3.1.

In contrast, if we substitute the softmax attention with linear attention, we have

πi
j(T ) = e⊤j T

⊤C⊤(QKi)CTe2n+1,

resulting in πi
j(T ) being dependent solely on the j-th and (2n+ 1)-th columns of T . Additionally,

we no longer have
∑2n+1

j=1 πi
j(T ) ̸= 1 for each head i ∈ {1, 2, . . . , h}.
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